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ABSTRACT

Evidence of successful predation or scavenging in the fossil record represents important palaeo-
biological data to more thoroughly understanding extinct ecosystems. Shelly coprolites are par-
ticularly useful indications of durophagous predation in deposits, as they can have a higher
preservational potential than their producers. Here we present a new shelly coprolite from the
Silurian (Pridoli) Wallace Shale of New South Wales, Australia. This specimen contains abundant
fragments of the trilobite Denckmannites rutherfordi Sherwin, 1968 that show limited disarticulation
across exoskeletal sections. We propose that a pterygotid eurypterid was the most likely producer
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of this coprolite, although trilobites and fishes are not completely excluded as possible trace-mak-
ers. In documenting this specimen, we highlight that the Wallace Shale likely preserves a more
complex palaeoecosystem than previously thought and renewed efforts to understand this deposit

are needed in light of this new insight.
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RECORDS of predation within the fossil record present
important information regarding predator-prey dynamics in
palaeoecosystems (Brett 1990, 2003, Kowalewski 2002,
Klompmaker et al. 2019). Injured specimens (Babcock 1993,
2003, Vinn 2009, 2017, 2018, Bicknell & Paterson 2018,
Bicknell & Pates 2020, Bicknell et al. 2018b, 2023), drill
holes (Kowalewski et al. 2000, Hoffmeister 2002, Amano
2003, Hoffmeister et al. 2004, Vinn et al. 2021), gut contents
(Richter 1992, Sues 1993, Jago et al. 2016, Zacai et al. 2016),
and coprolites (Héntzschel et al. 1968, Hunt 1992, Toom
et al. 2020, Kimmig & Strotz 2017, Kimmig & Pratt 2018,
Knaust 2020, Hunt & Lucas 2021) all represent useful evi-
dence of predation. These different records present varying
degrees of insight into possible trophic interactions, with the
rarer specimens (such as prey within gut contents) present-
ing much more palaeoecological information (Babcock 1993,
Zacai et al. 2016, Bicknell & Paterson 2018).

Coprolites containing fragmentary animal parts record
predation or scavenging and are very useful for reconstructing
trophic interactions. Shelly coprolites often reflect shell crush-
ing (durophagous) activity and have a higher preservation
potential than their producers (Vannier & Chen 2005). Shelly
coprolites are well-documented in early to middle Paleozoic
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deposits (e.g., Vannier & Chen 2005, Klompmaker et al. 2019)
and such examples are usually attributed to activity by dur-
ophagous animals, such as trilobites and other euarthropods
(e.g., Vannier & Chen 2005, Bicknell & Paterson 2018,
Bicknell et al. 2022a), with few examples possibly being pro-
duced by early vertebrates (Hunt et al. 2012). While the
Cambrian coprolite record is excellent (e.g., Vannier & Chen
2005, Kimmig & Strotz 2017, Kimmig & Pratt 2018, Knaust
2020), the Ordovician and Silurian records are comparatively
poor (Hunt et al. 2012). The identification of shelly coprolites
within deposits of these time periods therefore presents new
evidence for possible durophagous animals. To expand the
record of Silurian coprolites (e.g., Rolfe 1973, Bischoft 1990,
Gilmore 1992, Edwards et al. 1995), and demonstrate novel
examples of durophagous predation within late Silurian
deposits of Australia, we report a shelly aggregation from the
Silurian (Pfidoli)-aged Wallace Shale.

Materials and methods

The specimen (AM F158002) reported herein was collected
by PMS from near Mirrabooka ‘homestead’ along a tributary
of Wattle Creek, at approximately 33°12/27.00"S,
148°51'48.72"E (originally collected by Sherwin 1968) within
the Wallace Shale (Figure 1). This location is slightly north
of the old township of Cheesemans Creek (near Orange), at
the midpoint between Bathurst and Parkes, central New
South Wales (NSW), Australia. The specimen was collected
from a single bedding plane that contained numerous
Denckmannites rutherfordi Sherwin, 1968 (Figure 1D), pre-
served in articulation, or in the Salterian moulting
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Figure 1. Geography, geology, stratigraphy, and bedding plane information for specimen locations within the Wallace Shale. A, Map of Australia showing specimen
location (red star) in New South Wales. B, Geological map showing rocks proximal to Mirrabooka ‘homestead’. Red stars indicate specimen location. A simplified
stratigraphic column is shown on the right. C, Panoramic view of located where specimens were collected, from exposure of left creek bank — small tributary run-
ning east of Wattle Creek. D, Typical specimen of Denckmannites rutherfordi Sherwin, 1968 found at the specimen site with Salterian moulting arrangement.
Hundreds of individuals comparable to this specimen are uncovered on bedding surfaces.



arrangement. Hence, this specimen was somewhat aberrant
for having been crushed, disarticulated, and containing mul-
tiple individuals within a constrained region (compare
Figure 2 to typical specimens from the same horizon, such
as Figure 1D and Sherwin 1968, pl. 133). The specimen was
coated in magnesium oxide and photographed under low
angle LED light with a Canon EOS 5DS. Images were
stacked using Helicon Focus 7 (Helicon Soft Limited) stack-
ing software.

Geological and geographical context

The geological context of this Wallace Shale site was dis-
cussed in Sherwin & Rickards (2002, p. 87); hence, a sum-
mary is provided here. The unit at the considered site
outcrops primarily as a green-grey to olive shale that occa-
sionally splits along bedding planes, although more often
splits conchoidally along cleavage planes (Wood 1955,
Tuckerson 1966, Partridge 1967). The shale is medium to
thickly bedded, with internal laminations only apparent in
distinct marker horizons (typically containing course, angu-
lar volcanic feldspar and quartz grains). The unit also
appears to be enriched in heavy minerals like rutile, zircon,
and tourmaline compared to the underlying sequences
(Pickett 1982). Near Mirrabooka ‘homestead’, and in the
surrounding Cheesemans Creek-Spring Creek area, the
Wallace Shale conformably the Mirrabooka
Formation. Slightly northeast of this, the shale also interfin-
gers with (and may conformably overly) the Borenore and
Molong limestones. The unit is conformably overlain by the
Bulls Camp Volcanics and disconformably overlain in local
patches by Miocene basaltic volcanics (Pogson & Watkins
1998).

The Wallace Shale generally hosts boulder beds represent-
ing slump deposits. These range in size from relatively small
to extremely large (3-450m) and of various different ages
(although locally derived blocks tend to be of a similar age).
Most are contemporaneous with the Wallace Shale.
However, four outcrops near Mirrabooka ‘homestead” appear
to be Ordovician, hosting conodonts, graptolites, brachio-
pods, and trilobites similar to those of the basal Malongulli
Formation (Sherwin 1966, Percival 1978, 1979, and observa-
tions by PMS). The upper part of the unit near Mirrabooka
‘homestead’ also hosts a turbiditic sandstone with subordin-
ate interbeds of shale. This sandstone is reddish-brown or
greenish-grey in colour and contains flute casts and inverte-
brate trails on the bedding surfaces. This upper sandstone
sequences was termed the Nyrang Sandstone Member by
Sherwin (1971a), who expanded on work by Wood (1955).
Presence of turbidites, major slumping, and allochthonous
blocks in the unit, along with common planktonic grapto-
lites and small-eyed Denckmannites rutherfordi, suggest that
the environment was a relatively deep marine basin. This is
further supported by a rather depauperate benthic fauna
consisting of Batocara cf. robustus (Mitchell, 1924) and an
unidentified odontopleurid trilobite, as well as several
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species of dendroidal graptolites, molluscs, brachiopods,
conularids, and corals (Sherwin 1968, 1971b, 1976, Strusz
1980, Pickett 1982, see Pogson & Watkins 1998, table A1.18
for an overview).

Graptolites from the site sampled in the Wallace Shale
near Mirrabrook ‘homestead’ give a definitive Pfidoli age
(Sherwin & Rickards 2002). The shale contains a fauna,
mainly dominated by monograptid species, that are very
similar to those described from the Rosebank Shale and
Cowridge Siltstone at Yass, NSW (Jenkins 1982, Rickards &
Wright 1999) and the Humevale Formation, Ghin Ghin,
Victoria (Rickards & Garratt 1990, Rickards 2000, Packham
et al. 2001). The conodont species Belodella anomalis
Cooper, 1974 described from an allochthonous (likely con-
temporaneous) block within the unit at Boree Creek, NSW
(Cockle 1999) supports a Pridoli age (Farrell 2004) for the
Wallace Shale. Finally, the upper portion of the unit poten-
tially extends into the Early Devonian further along Wattle
Creek, as indicated by the presence of Monograptus cf. uni-
formis (Tuckerson 1966, Sherwin 1976).

Description

The shelly aggregation is elongated, 28.9mm long and
15.1 mm wide (Figure 2). The edge of AM F158002 is sharp
and defined by the dense aggregation of tens of trilobite sec-
tions. Due to the shelly composition, the specimen has at
least 2mm relief. Identifiable trilobite sections include pygi-
dia, thoracic segments, and cephala. All fragments belong to
Denckmannites rutherfordi. No soft-tissue is preserved.

Discussion

Shelly aggregates within the invertebrate fossil record are
typically considered examples of cololite and coprolite bro-
malites. Comparing AM F158002 with the most recent sys-
tematic work on bromalites (Knaust 2020), we conclude that
the specimen does not completely conform with diagnoses
of the described ichnospecies. This has limited our ability to
present a formal taxonomic assessment of AM F158002 and
we have therefore chosen to leave the specimen in open
nomenclature. However, the lack of any evidence for a gut
tract surrounding the specimen excludes AM F158002 from
the cololite category. Furthermore, the specimen is morpho-
logically comparable to other trilobite-rich aggregates con-
sidered coprolites (see Babcock 2003, Daley et al. 2013, Ding
et al. 2020, Bicknell et al. 2022a). As such, we suggest AM
F158002 is likely a coprolite, illustrating the presence of a
durophagous predator or scavenger within the Wallace
Shale.

Previous examples of eurypterid and fish-rich shelly
coprolites have been noted from Silurian-aged deposits
(Caster & Kjellesvig-Waering 1964, Rolfe 1973). Further,
Silurian-aged coprolites that show primarily eurypterid
fragments also contain trilobite fragments (Caster &
Kjellesvig-Waering 1964) and are up to four times longer
than AM F158002. Both eurypterid and fish-rich shelly
coprolites have been attributed to predation by large
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Figure 2. Coprolite from the Wallace Shale. A, Complete specimen. AM F158002. B, Line drawing of A showing edges of the fragmented sections. Identifiable struc-
tures coloured grey. Acronyms: cep: cephalon; pyg: pygidial section; thr: thoracic fragment.



eurypterids (Caster & Kjellesvig-Waering 1964, Rolfe 1973,
Selden 1984, Schmidt et al. 2022), based on the co-occur-
rence of sea scorpions with the coprolites. Large pterygotid
eurypterids are known from other Silurian deposits of
Australia (McCoy 1899, Bicknell et al. 2020) and would
have been capable of capturing prey with hypertrophied
chelicerae (Bicknell et al. 2022b) for subsequent shell
crushing with re-enforced gnathobasic spines on the large
coxal regions of swimming legs (Clarke & Ruedemann
1912, Miller 2007, Poschmann et al. 2017, Haug 2020).
This contrasts the structurally weaker gnathobasic spines of
smaller eurypterid genera that were likely limited to shred-
ding soft prey (Selden 1981, Bicknell et al. 2018a).
Eurypterid fossils have not been identified within the
Wallace Shale to date. However, this likely reflects a pres-
ervational bias towards biomineralized structures within the
formation and a notable lack of soft-bodied fauna. An
alternative to eurypterids as producers of this coprolite
could be trilobites. The trilobites of the Wallace Shale may
have consumed each other, likely targeting smaller individ-
uals, using gnathobasic spines on walking legs (Bicknell
et al. 2021). However, coprolites produced by Cambrian-
aged trilobites show marked disarticulation along exoskel-
etal sections (Daley et al. 2013, Bicknell et al. 2022) and
AM F158002 lacks this degree of breakage. As such, a tri-
lobite producer is less likely when compared to the euryp-
terid explanation.

One final possibility is that AM F158002 represents a fish
coprolite. Fishes, while rare in Silurian deposits of Australia,
have been recorded from some localities (Burrow & Young
1999, Burrow & Turner 2000), and possible Pridoli-aged
ancanthodians and thelodontidid scales are known from the
so-called ‘Carribuddy’ Formation (Turner 1993). However,
ancanthodians may not have been effective at consuming
trilobites and antiarch placoderm fishes are not known from
Gondwana until the Emsian (Lebedev et al. 2022). As such,
it is unlikely that fishes produced the coprolite.

Taken together, the most likely coprolite producer was a
pterygotid eurypterid. This presents important insight into
the fauna that may not be preserved within the formation.
This palaeoecosystem was more complex than previously
thought and we suggest that additional sampling from other
sections of the shale may yield novel fossil material to
expand the known palaeodiversity of the deposit.
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