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Abstract: Insight into how extinct animals responded to injuries developmental malfunctions and 
pathologies can be derived by examining malformed specimens. Trilobites are an ideal group for 
understanding how a completely extinct group of arthropods responded to and recovered from these 
conditions, as their biomineralised exoskeletons preserves malformations. Here we consider a slab 
containing eight individuals of the asaphid trilobite Pseudogygites latimarginatus from the Colling-
wood Member of the Lindsay Formation, Canada. Examining this slab, two individuals with malfor-
mations are documented. These malformations are considered injuries and used to demonstrate how 
P. latimarginatus recovered from failed predation attacks, allowing us to consider possible predator 
groups. The cluster is interpreted as possible evidence for an in situ biological aggregation that was 
preserved prior to a moulting event. Implications for this gregarious behaviour are considered, pre-
senting more insight into the palaeoecology of Ordovician asaphid trilobites.
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1. Introduction 

Trilobites are extinct marine arthropods with an excep-
tional fossil record ranging from the Cambrian to the 
end- Permian extinction (Hughes 2007; Paterson et al. 
2019; Suárez & Esteve 2021). Their biomineralised 
exoskeletons aided preservation, in addition to giv-
ing them protection and support during life (Webster 
2007). This same exoskeleton is ideal for preserving 
malformed trilobites in the fossil record (Owen 1985; 
Babcock & Robison 1989; Babcock 1993; Babcock 
2003; Babcock 2007; Bicknell & Paterson 2018). 
There is therefore a wealth of data on trilobite inju-
ries (Šnajdr 1979a, Šnajdr 1979b, Babcock 1993; 
Fatka et al. 2015; Bicknell & Pates 2020; Foster 
2021; Zong 2021; Bicknell et al. 2022b; Bicknell 
et al. 2022c; Zong & Bicknell 2022), teratologies 
(Bergström & Levi-Setti 1978; Owen 1985; Bick-
nell & Smith 2021; Bicknell et al. 2023), and neo-

plasms (Šnajdr 1978; Owen 1985; Bicknell et al. 
2022a; DeBaets et al. 2022). Despite this literature, 
malformations are commonly considered as isolated 
examples (see tables in Owen 1985; Bicknell & Pa-
terson 2018; Bicknell & Smith 2021; Bicknell & 
Smith 2022; Fatka et al. 2022). However, a shift to 
considering malformations at the population level 
has occurred recently (Pates et al. 2017; Bicknell 
et al. 2019a; Pates & Bicknell 2019; Bicknell & 
Smith 2021; Bicknell & Smith 2022; Bicknell 
et al. 2022a; Bicknell et al. 2023). This new direc-
tion has allowed patterns in prey size to be uncovered 
(Bicknell et al. 2022a), presented insight into injury 
recovery in trilobites (Pates & Bicknell 2019), and 
highlighted patterns of teratological development for 
the group (Bicknell & Smith 2022). 

Pseudogygites latimarginatus Hall, 1847 from the 
Late Ordovician (Katian, Cincinnatian Regional Se-
ries) Collingwood Member of the Lindsay Formation 
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represents a possible target for documenting malformed 
trilobites within a larger population context. This is 
because injured (Owen 1985; Rudkin 1985) and ter-
atological (Babcock 1993) specimens have previously 

been reported. Developing on this previous research, we 
considered museum collections housing other examples 
of this species. In this search, a slab of Collingwood 
Member preserving a cluster of eight, fully articulated 

 

Fig. 1. Geographical and geological context for the Collingwood Member. A – Map of North America showing area of 
interest in box. B – Locality map. The slab comes from a quarry in Bowmanville, east of Toronto, Ontario. C – General litho-
stratigraphy of Upper Ordovician strata in southern Ontario, Canada. D – Stratigraphic section of the lower Collingwood 
Member at the Bowmanville. Figure elements for (B–D) after Brett et al. (2006) and Gbadeyan & Dix (2013). 
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individuals of P. latimarginatuswasidentified.Impor-
tantly, two individuals on this slab show malformations. 
In documenting this slab, we explore the origin of these 
malformations and explanations for the cluster.

2. Geological content 

The examined slab was collected from a quarry 
in Bowmanville, Ontario, Canada, east of Toronto 
(Fig. 1A, B), likely the Blue Circle Cement Ltd. Quarry 
or adjacent stream exposures. The material is from the 
Late Ordovician (Katian) in age Collingwood Mem-
ber, formerly “Collingwood Formation” (Raymond 
1912), within the Lindsay Formation (Fig. 1C, D). 
The Collingwood Member is up to 9 m thick and con-
sists of black to brown carbonaceous and fossiliferous 
shale with limestone interbeds (Zhang et al. 2011). 
The member has been interpreted as equivalent to at 
least part of the Utica Shale of eastern North America 
(Armstrong & Carter 2010; Zhang et al. 2011). The 
shales are organic- rich and one of the earliest commer-
cially exploited oil shale units (Brett et al. 2006). The 
type section is near Craigleith Provincial Park, Geor-
gian Bay (section 6; Hamblin 1999, figs. 2, 9).The
Collingwood Member overlies the so- called ‘Lower 
Member’ of the Lindsay Formation and is overlain 
by the Blue Mountain Formation (Brett et al. 2006; 
Zhang et al. 2011). 

The slab considered here originates from the black 
and grey shale facies of Brett et al. (2006). Fossils in 
the shales are usually fragmentary, and trilobite fossils 
are usually represented by isolated cranidia or pygidia, 
However, there are rare horizons that yield articulated 
trilobites, including moults, similar to the slab consid-
ered here. 

3. Material and methods 

The studied slab of Collingwood Member (Fig. 2) is 
housed at the Palaeontological collection of the Staat-
liches Museum für Naturkunde Karlsruhe (SMNK-
PAL), Karlsruhe, Germany. The slab was acquired in 
1980 from R.Henzel, Celle, Germany and assigned 
the specimen number SMNK-PAL 10390. Pseudogy-
gites latimarginatus specimens were visually assessed 
under normal light for possible malformations. The 
slab and specimens were photographed normally and 

coated in ammonium chloride using a Canon EOS R5 
camera mounted with an EF 100 f/2.8 Macro IS USM 
lens under white light. The colour, contrast, and bright-
ness of the images were adjusted using Adobe Photo-
shop Lightroom. Specimen measurements were made 
from photographs in ImageJ (Schneider et al. 2012). 

4. Terminology 

Injury: Exoskeletal breakage because of injury, at-
tack, or moulting issues (Bicknell et al. 2022a). The 
malformations are commonly L-, U-, V-, or W-shaped 
indentations in the exoskeleton (Babcock 1993; 
Bicknell & Pates 2019; Bicknell et al. 2022a), or a 
‘single segment injury’ (SSI; sensu Pates & Bicknell 
2019; Bicknell & Pates 2020; Bicknell et al. 2022a) 
and often show cicatrisation and/or segment regener-
ation. Rarely, exoskeletal areas can recover abnormal-
ly, resulting in exoskeletal section fusion and possible 
lack of segment expression (ConwayMorris & Jen-
kins 1985; Owen 1985; Bicknell et al. 2022a; Bick-
nell et al. 2023). 

Malformation: Evidence for injuries, teratologies, or 
pathologies on the exoskeleton. 

Teratology: The expression of genetic, developmen-
tal, or embryological malfunctions (Owen 1985). Mor-
phologies ascribed to teratologies include additional, 
removed,oroffsetspinebases,segments,andspines,
as well as fusion or bifurcation of ribs, and abnormally 
developed exoskeletal structures (Strusz 1980; How-
ells 1981; Owen 1985; Bicknell & Smith 2021; 
Bicknell & Smith 2022). 

Pathology: Malformations caused by infections or 
parasites. Swellings in constrained exoskeletal sec-
tions are often attributed to pathological infestation in 
trilobites (Owen 1985). 

5. Results 

Two malformed Pseudogygites latimarginatus are 
identified. The first individual is partly preserved,
missing the right side of the exoskeleton. The individ-
ual therefore consists of a partial cranidium, thorax, 
and pygidium, and is 47.7 mm long (Fig. 3A, C). The 
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left side of the cephalon has a W-shaped indentation 
that is 6.1 mm long (Fig. 3C, black arrows). The region 
proximal to the indentation lacks the genal spine, and 
shows rounding (Fig. 3C, white arrow). 

The second malformed individual is 50.2 mm long, 
completely preserved, and has two malformations 
(Fig. 3B, D, E). The left side of exoskeleton has a large 
V-shaped indentation that extends from the 7th thorac-
ic segment to the pygidium (Fig. 3B, D). The inden-
tation extends 4.5 mm from the exoskeletal edge and 

truncates the 7th and 8th thoracic segments. Pygidial 
terrace lines are not present proximal to the malforma-
tion. The second malformation is located on the right 
side of the pygidium (Fig. 3B, E). The seventh pygidial 
rib terminates 1.4 mm from the axial ring, contrasting 
all other the pygidial ribs. Additionally, the pygidial 
border proximal to this malformation is asymmetrical, 
albeit subtly, compared to other specimens on SMNK-
PAL 10390. 

 

Fig. 2. Slab preserving a cluster of eight articulated Pseudogygites latimarginatus (SMNK-PAL 10390) from the Late Or-
dovician (Katian) Collingwood Member of the Lindsay Formation, Canada. Yellow stars indicate injured individuals. Image 
credit: MathiasVielsäcker. 
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Fig. 3. Pseudogygites latimarginatus specimens with injuries. A, C – Partial specimen with a W-shaped injury to the left 
cephalic region. A: Complete specimen. C: Close- up of injury. B, D, E – Complete specimen with two injuries. B: Complete 
specimen. D: Close- up of V-shaped injury to thorax and pygidium. E: Close- up of malformed pygidial ribs. Black arrows 
in (C–D) indicate malformations described in text. White arrow in (C) indicates injury rounding. Trilobites coated in ammo-
nium chloride before imaging. All images converted to greyscale. Image credit: MathiasVielsäcker. 
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6. Discussion 

Malformations observed here show little evidence of 
abnormal genetic developments and no indications of 
neoplasms (refer to Terminology section). These mal-
formations are also broadly comparable to malformed 
Cambrian (Owen 1985; Bicknell & Paterson 2018, 
Bicknell et al. 2022a) and Ordovician trilobites con-
sidered to have injuries (see Sinclair 1947; Hessin 
1988; Zong 2021; Bicknell et al. 2022b). As such, 
the malformations here are classed as injuries. The 
rounding of the injuries in Fig. 3 also indicates that 
these individuals were able to recover from these in-
juries in subsequent moulting events (Owen 1985; 
Bicknell et al. 2022a). 

The W-shaped indentation in the cephalon shows 
a rare example a cephalic injury that likely did not 
result in death of the individual. There are two ex-
planations for this injury.Thefirst option is that the
injury records failed or complicated moulting. While 
unlikely, this is possible as Pseudogygites latimargi-
natus has long genal spines that may have complicat-
ed moulting (ConwayMorris & Jenkins 1985; Da-
ley & Drage 2016). However, one would expect a 
stunted genal spine (see Hessin 1988; Bicknell et al. 
2023) as opposed to complete spine removal and lo-
calised rounding of the injury. Furthermore, this inju-
ry is comparable morphologically to other examples 
of W-shaped indentations to the cephalic region (see 
Resser & Howell 1938; Babcock 1993; Bicknell 
et al. 2018d; Bicknell et al. 2022a). As such, while we 
cannot completely discount moulting, it seems more 
likelythatthiscephalicinjuryreflectsfailedpredation.

The individual with the V-shaped indentation on the 
left side of the exoskeleton and the malformed pygid-
ial ribs is an example of one specimen recording two 
possible events. The V-shaped injury is comparable to 
other recorded examples of trilobites with V-shaped 
indentations considered evidence of failed preda-
tion (see Rudkin 1979; Owen 1985; Bicknell et al. 
2022aforexamples).Wethereforeconfidentlyascribe
this injury to failed predation. The malformed pygid-
ialribsandpygidialbordercouldreflectfailedpreda-
tion, a complicated moulting event, or possible genetic 
malfunctions. However, as both the ribs and pygidial 
border are disrupted, a genetic explanation seems less 
likely. In this situation, we would expect to see fused 
ribs, without marked disruption of the border (Owen 
1985). Regardless though, the ribs and pygidial border 
were disrupted and recovered abnormally. 

The injuries from failed predation documented here 
and in Rudkin (1985) prompt some consideration of 
possible predators. The Collingwood fauna houses two 
groups of animals that could have been predators: nau-
tiloids and trilobites (Russell & Telford 1983; Rud-
kin 1985; Brett et al. 2006). Nautiloid cephalopods 
are traditionally considered the primary injury produc-
ers in the Collingwood Member (Rudkin 1985; Nedin 
1999). This is a perspective that seems likely. Further-
more, recent three- dimensional biomechanical analy-
ses have presented strong evidence that trilobites and 
other artiopodans could have crushed biomineralised 
shell with gnathobasic spines on sets of walking legs 
(Bicknell et al. 2018b; Bicknell et al. 2021). This is 
akin to durophagous predation by modern day horse-
shoe crabs (Botton 1984; Bicknell et al. 2018a; 
Bicknell et al. 2018c). We therefore propose that both 
trilobites and large cephalopods produced these inju-
ries. It is important to note that there are Ordovician 
predator groups that could have caused these injuries 
that may not be preserved within the fossil record of 
the Collingwood Member (see Brett 2003) or may 
not have been collected (Whitaker & Kimmig 2020). 
Further examination of the deposit may therefore un-
cover new evidence of other predators. 

Trilobite clusters consisting of mostly fully ar-
ticulated individuals preserved on the same bedding 
plane are termed ‘body clusters’ that record mating, 
moulting, or other gregarious activities that are pre-
served through rapid burial events, commonly storms 
(Speyer & Brett 1985; Karim & Westrop 2002; Pa-
terson et al. 2007; Paterson et al. 2008; Gutiérrez-
Marco et al. 2009; Brett et al. 2012; Brett 2015; 
Schwimmer & Montante 2019; Corrales-García 
et al. 2020). Large monospecific clusters of smaller
trilobite species have also been considered evidence 
for exaerobic specialist inhabiting low- oxygen condi-
tions (Gaines & Droser 2003; Paterson et al. 2016; 
Holmes et al. 2021). The Collingwood Member beds 
that preserve Pseudogygites latimarginatus are con-
sidered to represent deep to moderately deep muddy 
substrates, that ranged between dysoxic to fully oxic, 
andhadlimitedinfluenceofdistalstorms(Brett et al. 
2006). Given this depositional environment and the 
fully articulated nature of the individuals, the trilobite 
cluster considered here shows little evidence for me-
chanical accumulation by bottom currents. Further-
more, preservation of individuals in the same dorso- 
ventral attitude on the same bedding plane (Fig. 2) 
supports the interpretation of this cluster as an in situ 
biological aggregation. Finally, as P. latimarginatus 

eschweizerbart_xxx



205Pseudogygites latimarginatus from the Late Ordovician Lindsay Formation, Canada

is larger than forms commonly considered exaerobic 
specialist (see Gaines & Droser 2003; Paterson et al. 
2016; Holmes et al. 2021) and lived within dysoxic 
to oxic conditions, evidence of exaerobic forms can 
likely be discounted. As such, we consider this ag-
gregation to be a ‘body cluster’. Trilobite ‘body clus-
ters’arethoughttobereflectbehaviourssuchasmass
moulting, or synchronous reproduction (see Speyer & 
Brett 1985; Speyer 1987; Hughes & Cooper 1999; 
Karim & Westrop 2002; Paterson et al. 2007; Pa-
terson et al. 2008; Gutiérrez-Marco et al. 2009; 
Bicknell et al. 2019a). Similar clustering events are 
observed in modern and fossil horseshoe crabs (Shus-
ter Jr. 1982; Smith et al. 2002; Shuster Jr. et al. 
2003; McGowan et al. 2011; Bicknell et al. 2019b). 
ThemonospecificindividualsontheCollingwoodslab
with no evidence of moulting indicates that the ‘body 
cluster’reflectsapossiblemoultingandmatingevent
that was preserved before the moulting began (Spey-
er & Brett 1985). 
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