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Abstract We investigated highly mature sedimentary rocks exposed along both sides of the Fram Strait in
the northern North Atlantic using apatite fission track and (U‐Th)/He thermochronology to obtain information
on the thermal imprint of rifting and continental breakup processes along a sheared margin. Our data showed
that the conjugate margins experienced several heating episodes, which we explain as resulting from heat
transfer along segments of the De Geer Fracture Zone, a large continental transform system which connected
magmatic centers north and south of the Fram Strait. Heating occurred prior to and during the Eurekan intraplate
orogeny, which occupied the position of the present‐day Fram Strait during the Eocene. Heat transfer may have
caused or contributed to lithospheric weak zones, which focussed deformation during intraplate orogeny.
Movements along the transform fault system continued during the Oligocene, after the end of the Eurekan
Orogeny, causing further structural weakening of pre‐existing fault zones. These were exploited during the final
continental breakup leading to the opening of the Fram Strait. No unambiguous thermal signature associated
with this latest stage of breakup was detected. Our data underline recent studies on the importance of structural
inheritance and continental transform faults for the prolonged and complex processes of continental rifting and
breakup.

1. Introduction
Continental rifting, breakup, and the formation of passive continental margins are complex multistage processes,
resulting from the interaction of deformation, and magmatic, thermal and isostatic processes (e.g., Peron‐Pin-
vidic &Manatschal, 2019). They are inevitably associated with heat flow variations, as rifting strongly influences
the thermal structure of the lithosphere, and vice versa: Lithospheric extension plus probably associated magmatic
activity increases the crustal heat flow, and increased heat flow weakens the crust and thus determines the locus of
breakup and facilitates rupture (e.g., Blackwell, 1978; Brott et al., 1981; Chapman & Rybach, 1985; Huismans &
Beaumont, 2008; Nemčok, 2016). Understanding the thermal history of passive continental margins is thus
important for understanding the processes of rifting, breakup, and margin formation. For this study, we aim to
contribute to this understanding by investigating the conjugate margins to both sides of the Fram Strait in the
northern North Atlantic, that is, the eastern North Greenland and the western Barents margins (hereafter named
“Greenland margin” and “Barents margin”). The Greenland and Barents margins developed along a continental
transform fault zone—the De Geer Fracture Zone—which presumably formed already during the Paleozoic
(Harland, 1969). It linked two mid‐ocean ridges: The Gakkel Ridge of the Arctic Ocean north of the Fram Strait
and the Mohns Ridge of the Norwegian‐Greenland Sea south of the Fram Strait. Breakup along the De Geer
Fracture Zone (DGFZ) resulted in the formation of a sheared margin along the Fram Strait, evolving into a highly
oblique divergent margin (Faleide et al., 2008).

The motivation for our study was the observation of strongly enhanced thermal maturities of sedimentary rocks
exposed in close vicinity to the coast of either margin (Håkansson et al., 1994; Kleinspehn & Teyssier, 1992;
Paech & Estrada, 2019; Paech & Koch, 2001). Along the Greenland margin, Late Cretaceous deposits of the
Nakkehoved Formation show vitrinite reflectance (VR) values of up to 7%–10% (Håkansson et al., 1994), cor-
responding to greenschist‐facies temperatures. These maturation values quickly decrease inland (Håkansson
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et al., 1994; Håkansson & Pedersen, 2001). Further north along the Greenland margin, Paleocene sedimentary
rocks of the Thyra Ø Formation also show increased VR values of >2%, as compared to thermal maturities
reported from same‐age sedimentary rocks further inland (Håkansson et al., 1994; Paech & Estrada, 2019). A
mirror‐image situation was observed on the opposite side of the Fram Strait along the Barents margin: On Prins
Karls Forland (an island off Spitsbergen forming the northwesternmost subaerial exposure of the Barents Shelf)
Paleogene sedimentary rocks show VR values of up to >4% (Kleinspehn & Teyssier, 1992; Paech &Koch, 2001).
By contrast, similar‐aged deposits exposed on western Spitsbergen only ∼15 km further east across the For-
landsundet Graben display much lower thermal maturities with VR values <1% (Kleinspehn & Teyssier, 1992,
2016; Paech & Koch, 2001).

Håkansson et al. (1994) described the thermal overprint of both the Late Cretaceous and the Paleogene sedi-
mentary rocks exposed along the Greenland margin as being related to the same “thermal event.” Based on the
youngest stratigraphic age of the affected sedimentary rocks, this proposed event was placed as having occurred
during or after the Paleogene (Håkansson et al., 1994; Håkansson & Pedersen, 2001; Paech & Estrada, 2019). The
(post‐)Paleogene age suggests that the proposed thermal event may have been connected to the Miocene
northward propagation of the Knipovich spreading ridge (Dumais et al., 2020; Jokat et al., 2016), initiating the
opening of the Fram Strait and the final breakup between North America (Greenland) and Eurasia (Scandinavia).
The similar depositional age of the affected sedimentary rocks along the Barents margin and the similar pattern of
decreasing maturities away from the coast imply that both conjugate margins may have experienced the same
regional‐scale thermal history. This also implies that the thermally overprinted sedimentary rocks of both margins
recorded the heat flow variations associated with the last stages of continental breakup and incipient sea floor
spreading.

For studying the thermal evolution of the conjugate margins, and for bracketing the timing of the proposed
thermal event(s), we used apatite fission track (AFT) and (U‐Th)/He thermochronology and integrated these data
with published VR data by thermal history inversions. Our data will show that, despite the apparent similarities,
both margins have experienced a complex and differential thermal history, with several heating episodes all
occurring prior to the final continental breakup. We explain our data in terms of heat transfer and movements
along the DGFZ, underlining the importance of inherited fault structures and continental transforms for breakup
processes (Lundin et al., 2023).

2. Geological Background
2.1. Evolution of the Conjugate Greenland and Barents Margins

The Fram Strait forms the only deep‐water connection between the Arctic Ocean and the North Atlantic and is
situated along the Greenland and Barents margins (Figure 1). Both margins were formerly continuous and situated
within a large dextral continental transform system—the DGFZ. The DGFZ comprises the Senja Fracture Zone,
the Vestbakken Volcanic Province and the Hornsund Fault Zone (from south to north along the Barents margin;
e.g., Faleide et al., 2008; Gabrielsen et al., 1990; Ryseth et al., 2003), the Greenland Fracture Zone (separating the
Boreas and the Greenland Basin within the Norwegian‐Greenland Sea; e.g., Døssing et al., 2008; Faleide
et al., 1993; Mosar et al., 2002); the Trolle Land Fault Zone (in eastern North Greenland; e.g., von Gosen &
Piepjohn, 2003; Håkansson & Pedersen, 2001; Svennevig et al., 2016), and has presumably continued further
west, across northern Ellesmere Island (Piepjohn et al., 2016; Vamvaka et al., 2019) and along the northern
margin of the Canadian Arctic archipelago (Lundin et al., 2023). Movements along a precursor of the DGFZ
presumable commenced already during the Paleozoic (Dallmann, 2015; Harland, 1969). The DGFZ became
active as a dextral transform fault in the Late Cretaceous, accommodating the onset of rifting in the Eurasian Basin
and in the future Norwegian‐Greenland Sea (Srivastava, 1978). Continental rifting preceding the opening of the
Eurasia Basin was associated with trachytic to rhyolitic volcanism in North Greenland during the latest Creta-
ceous (Kap Washington Group volcanic sequence Estrada et al., 2001; Tegner et al., 2011; Thórarinsson
et al., 2011).

During the Paleocene, seafloor spreading commenced in the Baffin Bay/Labrador Sea area west of Greenland
(Oakey & Chalmers, 2012). In the early Eocene, spreading also initiated along the Aegir and Mohns Ridges of the
Norwegian‐Greenland Sea (Gernigon et al., 2012), and along the Gakkel Ridge of the Eurasia Basin (Arctic
Ocean, Schreider et al., 2019; Vogt et al., 1979). Extensional movements associated with seafloor spreading in the
Arctic and in the Norwegian‐Greenland Sea were accommodated by the right‐lateral continental DGFZ, which
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connected both spreading ridges. As a result of contemporaneous spreading east and west of Greenland,
Greenland moved north, converging with West Svalbard and Ellesmere Island (Figures 1c and 1d). This caused
the formation of the intraplate Eureka Orogen during the Eocene. Deformation was focused along the DGFZ and
an associated continental transform fault zone, the Wegener Fault along the Nares Strait (Figures 1c and 1d),
resulting, amongst others, in the formation of the West Spitsbergen Fold‐and‐Thrust Belt and the Wandel Hav
Mobile Belt (Figure 1a; Piepjohn et al., 2016).

Driven by changes in spreading rates and directions in the Norwegian‐Greenland Sea and associated movements
of Greenland, Eurekan deformation comprised several stages. The first Eurekan stage was dominated by NE‐SW

Figure 1. Map showing the areas affected by the Eurekan deformation and the associated structures (a) and the two phase
model after Piepjohn et al. (2016) illustrating the plate configuration causing the Eurekan structures with (b) the pre‐Eurekan
stage; (c) first stage of Eurekan deformation with NE‐SW contraction along the present west coast of Spitsbergen and
contemporaneously sinistral strike‐slip movements along the NE‐SW striking Wegener Fault (WF) between Northwest
Greenland and Ellesmere Island; (d) second stage of Eurekan deformation with NW‐SE dextral strike‐slip motions along the
De Geer Fracture Zone (DGFZ) between Northeast Greenland and Svalbard and NW‐SE contraction across Nares Strait on
Ellesmere Island; (e) post‐Eurekan stage with further motion along the DGFZ.
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compression along the DGFZ (Figure 1c), changing to transpression during the second Eurekan stage (Figure 1d).
Based on thermochronological studies in Pearya, the two stages of Eurekan Orogeny were accompanied by
episodic exhumation between 55‐48 Ma and 44‐38 Ma (Vamvaka et al., 2019). Due to the high degree of
obliquity, the style of deformation differed along the DGFZ. Compression and transpression along the northern
segments of the DGFZ, associated with the formation of the West Spitsbergen Fold‐and‐Thrust Belt, was coeval
with transtension along the southern segments of the DGFZ (central to southern Barents shelf), leading to dextral
pull‐apart basin formation and associated intense magmatic activity of the Vestbakken Volcanic Province (Libak
et al., 2012; Lundin et al., 2023).

When spreading in the Labrador Sea/Baffin Bay west of Greenland ceased at c. 33Ma (Engen et al., 2008; Faleide
et al., 2008; Talwani & Eldholm, 1977), the resulting new stress regime caused a change to predominantly
transtensive movements along the DGFZ (Figure 1e). These movements were again associated with enhanced
exhumation (post‐Eurekan stage, ∼34‐26 Ma; Vamvaka et al., 2019). Presumably during the early Miocene, the
Knipovich Ridge formed (Dumais et al., 2020; Jokat et al., 2016) and propagated toward the north into the area of
DGFZ, initiating the final continental break up and dissection of the Eurekan Belt. This led eventually to the
opening of the Fram Strait, connecting the spreading centers of the Arctic and the North Atlantic oceans. During
the middle Miocene, the Greenland and Barents margins experienced uplift (Bonow & Japsen, 2021; Dörr
et al., 2013; Dörr, Lisker, Piepjohn, & Spiegel, 2019; Japsen et al., 2023), associated with a regional unconformity
in the offshore seismic record (Døssing et al., 2016), and accompanied by magmatic activity (Geissler et al., 2019;
Prestvik, 1978; Sushchevskaya et al., 2009). Døssing et al. (2016) related these changes to a changed stress regime
along the Greenland Fracture Zone‐segment of the DGFZ, coeval with accelerated widening of the Fram Strait.

2.2. Sedimentary Rocks of the Wandel Sea Basin, Greenland Margin

Sedimentary successions of the Wandel Sea Basin in eastern North Greenland unconformably overlie folded and
metamorphosed rock units of the Neoproterozoic to Silurian Franklinian Basin (Dawes & Soper, 1973; Higgins
et al., 1981; Soper & Higgins, 1987, 1991; Thorsteinsson & Tozer, 1970). Their tectonic evolution was mostly
controlled by dextral kinematics along the Trolle Land Fault System (Håkansson & Schack Pedersen, 1982).
Håkansson and Schack Pedersen (1982, 2015) interpreted the local sedimentary occurrences within the Wandel
Sea Basin as different syn‐tectonic pull‐apart basins formed by several dextral strike‐slip events with late
Cretaceous deformation. According to von Gosen and Piepjohn (2003), strike‐slip deformation is mostly
concentrated along the faults of the Trolle Land Fault System, presumably related to the Eurekan deformation.
Svennevig et al. (2016) supported this suggestion but emphasized a compressional component associated with the
deformation.

Sedimentation in the Wandel Sea Basin started in the early Carboniferous with the deposition of sandstones,
partly red conglomerates and evaporitic rocks, followed by thick late Carboniferous to Permian limestones and
cherts, Triassic and Jurassic dark shales and siltstones, and the Early Cretaceous sandstones and siltstones of the
Ladegårdsåen Formation (Bjerager et al., 2019; Håkansson et al., 1991; Hovikoski et al., 2018). During the latest
Cretaceous, the Kap Washington Group was deposited in North Greenland, containing volcanic and pyroclastic
rocks associated with rift‐related magmatism (Estrada et al., 2001; Tegner et al., 2011; Thórarinsson et al., 2011).
The Kap Washington Group has the same stratigraphic age as the Nakkehoved Formation further south, exposed
along the north‐eastern coast of Kronprins Christian Land (Figure 2a). The Nakkehoved Formation is composed
of monotonous, dark gray, fine‐grained marine sandstones to greywackes, in places very rich in feldspar. It
contains a sparse bivalve fauna, on which the late Cretaceous age of the formation is based (Håkansson
et al., 1981). Svennevig et al. (2018) assign a Maastrichtian age to the Nakkehoved Formation in their revised
stratigraphy of Kronprins Christian Land. The Nakkehoved Formation differs from neighboring successions of
the same stratigraphic age exposed in the Kilen area (Figure 2a) in terms of the high amount of feldspar and due to
the “totally distinct” fauna (Håkansson & Schack Pedersen, 2015).

The Nakkehoved Formation also differs from all other deposits of the Wandel Sea Basin regarding its thermal
maturation, which indicates post‐depositional heating to temperatures of 200–300°C. This estimate is based on
VR values between 7% and 10%, newly grown albite and chlorite, illite crystallinity, and the complete degradation
of organic‐walled microfossils (Håkansson et al., 1994). Apparently restricted to a single nunatak, a “dense
swarm of quartz veins” occurs in the Nakkehoved Formation (Håkansson et al., 1994). Its formation is interpreted
as being associated with the post‐depositional thermal overprint of the Nakkehoved Formation (Håkansson
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et al., 1994). Fluid inclusions in quartz indicate a crystallization depth of the veins of only 200–300 m (Håkansson
et al., 1994). These shallow crystallization depths, along with the very modest deformation of the rocks and the
lack of any metamorphic fabric, suggest a purely thermal origin of the high post‐depositional temperatures
(Håkansson et al., 1994).

Northwest of Nakkehoved, Paleogene sedimentary rocks of the Thyra Ø Formation are exposed (Figure 2a),
mostly along three small islands named Prinsesse Margrethe Island, Prinsesse Thyra Island and Prinsesse Dagmar
Island (Prinsesse Islands in the following). The basis of the Thyra Ø Formation beneath the Prinsesse Islands is
unknown, but further west at Kap Rigsdagen (Figure 2a), the Thyra Ø Formation unconformably overlies Early
Cretaceous deposits of Barremian age (Piasecki et al., 2018).

The Thyra Ø Formation consists of alternating sandstones and shales with intercalated thin coal seams and
possibly altered volcanic ash layers (Paech & Estrada, 2019). The fluvial to marine, undeformed, greyish sedi-
mentary rocks are bedded horizontally to slightly inclined. For Prinsesse Margrethe Island, Håkansson et al.
(1981) described a coarse, block‐supported conglomerate with interbedded sandstone channel fills in a single

Figure 2. Geological maps of the study areas on the conjugate margins of eastern North Greenland (a) and western Svalbard
(b) with thermal maturities published by Håkansson et al. (1994), Kleinspehn and Teyssier (1992), Paech and Estrada (2019),
and Paech and Koch (2001) decreasing to the hinterland (maps redrawn and compiled after Dallmann, 2020, Japsen
et al., 2021; Piepjohn et al., 2016). Sample locations are marked as well as locations of published thermochronological data
by Schneider et al. (2019) (square), Blythe and Kleinspehn (1998) (triangle, circle), Barnes and Schneider (2019) (diamond)
and Japsen et al. (2021) (circle). The location of the outcrop with quartz vein occurrence is marked with the black star next to
the sample locations of CXX‐02, CXX‐03, CXX‐04 and CXX‐11 (Figure S1 in Supporting Information S1).
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isolated outcrop. Particularly the southeasternmost exposures of the Thyra Ø Formation contain fossil plant
material (e.g., Boyd, 1990) and dinoflagellate cysts, which show increasing corrosion toward the northeast.
Hence, the deposits of Prinsesse Margrethe Island are void of palynomorphs (Lyck & Stemmerik, 2000). Based
on its fossil content, the Thyra Ø Formation was dated as late Paleocene to earliest Eocene on the Prinsesse Islands
(Lyck & Stemmerik, 2000), and as early to middle Eocene at Kap Rigsdagen (Piasecki et al., 2018).

For Prinsesse Margrethe Island, Håkansson et al. (1994) reported a VR value with Rmax of about 2%. This
analysis is based on nine measurements only and therefore needs to be viewed with caution. VR values of the
Thyra Ø Formation at other localities range between 0.4% and 0.65% (Figure 2a) and were interpreted as being
related to burial (Håkansson et al., 1994; Paech & Estrada, 2019). The higher maturation value of Prinsesse
Margrethe Island, by contrast, was explained as related to the same post‐depositional “thermal event” that also
caused the high maturation of the Nakkehoved Formation and which may have extended to Kilen further south
(Figure 2a; Håkansson et al., 1994). Igneous activity as a heat source for this proposed thermal event was
considered as unlikely, because magmatic bodies are not known in Kronprins Christian Land and because—
according to these authors—accessory minerals were completely lacking in the quartz veins of Nakkehoved.
Instead, they suggest increased heat flow due to crustal thinning or the initiation of spreading at the Knipovich
ridge. Paech and Estrada (2019) restricted the extent of the thermal overprint to Nakkehoved and Prinsesse
Margrethe Island and also attributed the increased heat flow to the active plate boundary between northeast
Greenland and Svalbard. Japsen et al. (2021) suggest localized warming or differential exhumation as a cause and
a Late Cretaceous or Paleocene age based on AFT data of a sample from Nakkehoved. Pedersen et al. (2018), who
studied thermal overprinting in Kilen, concluded that the maximum temperature there must have been reached
after the Santon and before the Eurekan deformation, however, as a result of sedimentary burial.

2.3. Sedimentary Rocks of the Forlandsundet Area, West Svalbard, Barents Margin

In Svalbard, a (post‐) Carboniferous sedimentary sequence overlies folded and thrust‐faulted Devonian redbeds
and pre‐Devonian sedimentary and metamorphosed basement rocks (Dallmann, 2015; Frebold, 1935; Har-
land, 1997; Orvin, 1940). Between the Carboniferous and the Early Cretaceous, the basins of Svalbard and eastern
North Greenland evolved in a similar way, but from the Late Cretaceous onwards, both areas experienced
different geological developments: While Late Cretaceous deposits are widely exposed in North Greenland (e.g.,
in Nakkehoved, Kilen, or in the Kap Washington area), they are lacking on Svalbard (except for a possible
occurrence in the Sørkapp Land of Spitsbergen; Krutzsch, 2001; Smelror & Larssen, 2016). During the Late
Cretaceous, North Svalbard and the wider area of the Barents Shelf experienced a period of enhanced exhumation
(Dörr et al., 2012; Dörr, Lisker, Piepjohn, & Spiegel, 2019; Japsen et al., 2023; Lasabuda et al., 2021). Paleogene
deposition started with the Paleocene to Eocene coastal to shallow marine sandstones, siltstones and shales of the
Van Mijenfjorden Group and its equivalents in the Central Tertiary Basin and on Brøggerhalvøya, respectively
(Figures 2b and 3; Dallmann, 1999, 2015).

In the Forlandsundet area, that is, on Prins Karls Forland and on Spitsbergen along the western coast of the
Forlandsundet Graben (Figure 2b), the sedimentary sequences of the Buchananisen Group are exposed. The
Buchananisen Group comprises a clastic sedimentary succession, which lies unconformably on top of a pre‐
Devonian basement (Dallmann, 1999, 2020; Kleinspehn & Teyssier, 1992). According to Dallmann (1999 and
references therein), the colorful conglomerates with up to boulder‐sized angular clasts of the Selvågen Formation
form the basis conglomerate on Prins Karls Forland and are interpreted as alluvial fanglomerates. They are
overlain by the Sesshøgda, Reinhardpynten, Krokodillen, Marchaiselaguna and the Aberdeenflya Formations,
which are built up by coarse to fine sandstones alternating with clay and siltstones and conglomeratic layers and
represent alluvial to shallow marine deposits (Figure 3). The exposures east of the graben comprise the Sarsbukta
and Sarstangen conglomerates. The Sarstangen conglomerates are less consolidated compared to the other de-
posits, lack deformation and are the only formation directly palynologically dated to be of Oligocene age
(Kleinspehn & Teyssier, 2016; Schaaf et al., 2021; Figure 3).

Generally, the stratigraphic ages of the Buchananisen Group and of its individual formations are poorly defined.
Due to thermal overprinting, microfossils are lacking or poorly preserved (e.g., Čepek, 2001; Manum &
Throndsen, 1986). Deposition in the Forlandsundet Basin started prior to the formation of the Forlandsundet
Graben in the late Eocene/early Oligocene (Blinova et al., 2009; Kleinspehn & Teyssier, 1992). Based on
stratigraphic relationships and the general tectonic development recorded by the Cenozoic deposits on Svalbard,
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the possible age of the deposits ranges from late Paleocene to early Oligocene (Dallmann, 1999, 2015; Gabrielsen
et al., 1992; Kleinspehn & Teyssier, 1992; Livšic, 1974, 1977, 1992). According to Dallmann (2020), the
basement of Prins Karls Forland was deformed by the first stage of Eurekan compression. The deformation of the
overlying sediments of the Buchananisen Group, however, was associated with the second stage of the Eurekan
(cf. Piepjohn et al., 2016). These observations suggest that the Buchananisen Group on Prins Karls Forland was
deposited during/after the first stage of the Eurekan orogeny (i.e., (post) early Eocene) but pre‐Oligocene (i.e.,
prior to the end of second stage of the Eurekan). Hence, an Eocene (∼56–33 Ma) depositional age is most likely
for the Buchananisen Group on Prins Karls Forland.

The thermal overprint of the Buchananisen Group is restricted to the exposures of Prins Karls Forland, west of the
Forlandsundet Graben (Figure 2b). Here, VR values between 2% and 5% were reported (Kleinspehn & Teyss-
ier, 1992; Paech & Koch, 2001), corresponding to paleotemperatures of more than 200°C. By contrast, exposures

Figure 3. Overview of the Late Mesozoic and Cenozoic stratigraphy of North Greenland and Svalbard, published thermochronological data, temporal and spatial
occurrence of volcanism in the High Arctic and spreading activity. Stratigraphy is based on Dallmann (1999, 2015, 2020), Dörr, Lisker, Jochmann, et al. (2019),
Håkansson et al. (1981), Kleinspehn and Teyssier (2016), Lyck and Stemmerik (2000), Piasecki et al. (2018), Schaaf et al. (2021), Svennevig et al. (2018), and
Thórarinsson et al. (2015) with dotted lines showing uncertain depositional ages. Volcanic deposits and dated/correlated ash layers are marked in red (ash layers in Van
Mijenfjorden Group dated by Jones et al. (2016), ash layer in Thyra Ø Fm correlated by Paech and Estrada (2019)). Thermochronological data include range of Ar‐Ar
ages by Schneider et al. (2019) (square), a zircon fission track age by Blythe and Kleinspehn (1998) (triangle), zircon (U‐Th)/He ages by Barnes and Schneider (2019)
(diamond) and Apatite fission track ages by Blythe and Kleinspehn (1998) and Japsen et al. (2021) (circle). The time and location of volcanism are based on Døssing
et al. (2013), Estrada et al. (2010), Riefstahl et al. (2013) and Senger et al. (2014) and the spreading activity is based on Gernigon et al. (2012). KCL, Kronsprins
Christian Land.
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of the Buchananisen Group east of the Forlandsundet Graben showVR values <1% (Figure 2b). At the sites of the
highest VR values, Kleinspehn and Teyssier (1992) also describe localized ductile fabrics such as foliation and
deformation bands. They interpreted the high maturation in terms of a deeper burial west of the Forlandsundet
Graben as compared to the eastern side. This is in agreement with zircon (U‐Th)/He ages from the basement of
Prins Karls Forland and from the West Spitsbergen Fold‐and‐Thrust Belt, which suggest that the West Spits-
bergen Fold‐and‐Thrust Belt cooled from the middle Eocene onwards, whereas Prins Karls Forland remained at
higher temperatures and may thus represent a deeper structural level of the fold belt (Barnes & Schneider, 2019).
Paech and Koch (2001) suggested that the high maturation was influenced by tectonic deformation and
convective heat supply, likely due to a nearby spreading center.

3. Material and Methods
3.1. Sampling Strategy, Field Observations and Description of the Sampled Material

Sampling in North Greenland was carried out in 2018, during expeditions CASE 20 and RV Polarstern cruise
PS115/1, organized by the Federal Institute for Geosciences and Natural Resources. The samples from Prins Karls
Forland were collected in 2019 during a cruise with RV Clione. We aimed to take samples from Late Cretaceous
and Paleogene strata for which high VR values were previously reported by Håkansson et al. (1994) and Paech
and Koch (2001) (Figures 2a and 2b). In North Greenland, we sampled two sites on Prinsesse Thyra Island, one
site on Prinsesse Margrethe Island, and several locations at Nakkehoved, including specimens of the quartz veins
(Figures 2a, Table S1 in Supporting Information S1). Unlike previous descriptions in the literature (e.g.,
Håkansson et al., 1994; Japsen et al., 2021), we found that quartz veins within the Nakkehoved Formation are not
restricted to a single exposure but also occur in situ in another outcrop of the Nakkehoved Formation in Kronprins
Christian Land (Figures 2a, Table S1 and Figure S1 in Supporting Information S1).

On Prinsesse Thyra Island, the sampled strata differed between the eastern and the western coast: In the west, the
sandstones were weakly lithified (CXX‐50), whereas in the east, the sandstones were stronger lithified (CXX‐49).
On Prinsesse Margrethe Island, we took samples of mid‐to coarse‐grained sandstones of the Thyra Ø Formation
from a site close to a small stream (CXX‐43, CXX‐44). Because of the extensive snow cover, we could not sample
in situ exposures, but due to the abundance of only a single rock‐type, due to the angular platy appearance of the
rocks, and because of the relatively weak lithification of the Thyra Ø formation elsewhere in the Wandel Sea
basin, which would prevent transport of larger rock slabs, we are confident that the material originated from
Prinsesse Margrethe Island. On Prins Karls Forland, we sampled two transects across the Buchananisen Group,
focusing on areas for which high maturation values were published (Paech & Koch, 2001). One sample from the
Marchaiselaguna Formation (PKF2019‐9) was taken from an outcrop showing intense deformation accompanied
by carbonate veins.

The samples (including host rocks along with quartz veins from Nakkehoved) were investigated for indications of
thermal exposure by thin section microscopy and supporting electron microprobe analysis. The host rocks of the
quartz veins show signs of quartz mobilization, feldspar sericitization and growth of chlorite and epidote. All
these corroborate a thermal overprint of the host rock with temperatures between at least 200°C and 300°C. In
contrast to previous descriptions, the quartz veins are not composed purely of quartz but contain minor amounts of
feldspar, carbonate, chlorite, biotite and muscovite, hematite, rutile and ilmenite. This may indicate the
involvement of (magmatism‐related?) fluids during post‐depositional heating. The samples from Prinsesse
Margrethe Island also show sericitization and chloritization. By contrast, only weak indications for thermal
exposure were found in samples from Prinsesse Thyra Island. Details are reported in the Supporting Informa-
tion S1.

3.2. Methods

Apatite fission track and apatite (U‐Th)/He (AHe) analyses are thermochronological methods, that is, they are
temperature‐sensitive radiometric dating methods. AFT analysis is based on the spontaneous fissioning of ura-
nium, resulting in lattice damages (=fission tracks), which accumulate with time. AHe thermochronology is
based on the accumulation of He in the crystal lattice, resulting from the alpha decay of U, Th and Sm. The
temperature sensitivity of both thermochronometers is in the low temperature range, that is ∼120–60°C for AFT
(Wagner et al., 1989) and ∼85–40°C for AHe (Wolf et al., 1998). From AFT and AHe data, time‐temperature
paths are derived by thermal history inversions (e.g., Ketcham, 2005). Cooling and heating can be either
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interpreted as exhumation or burial due to tectonic processes or may reflect changes in the geothermal heat flow,
for example, due to magmatic activity or crustal thinning.

AFT analysis was carried out by GeoSep Services using standard procedures for the laser‐ablation inductively
coupled plasma mass spectrometer (LA‐ICP‐MS) method (Donelick et al., 2005; Hasebe et al., 2004). Apatites
were mounted and etched with 5.5 M HNO3 for 20 s. For track length analysis 252Cf irradiation was used. For
kinetic information, Dpar values were measured. Only single‐grain AFT ages with U‐concentration >0.1 ppm
were considered for central age determination with IsoplotR (Vermeesch, 2018). Single‐grain AHe analysis was
performed in the laboratory facilities of Bremen University. Raw AHe ages were corrected for alpha‐ejection
(Farley et al., 1996) using the stopping distance of Ketcham et al. (2011). Details on the analytical procedures
are described in the Supporting Information S1. Apatite can be affected by radiation damage, which influences He
diffusion and retention and causes a trend of older AHe ages with increasing effective Uranium (eU) content
(Shuster et al., 2006). In apatite crystals with low eU, He implantation by U‐rich neighboring minerals can also
lead to the inverse trend, that is, AHe ages become older with decreasing eU content (Spiegel et al., 2009). The
AHe ages were checked for these relationships (Figure S4 in Supporting Information S1).

For thermal history modeling, we used the HeFTy software package (Ketcham, 2005) with the annealing model of
Ketcham et al. (2007b) applying c‐axis projection. Although no positive relationship between eU and AHe age
was observed, the influence of radiation damage cannot be ruled out and we applied the diffusion model of
Flowers et al. (2009) in general, but in some cases also the diffusion model of Farley (2000). The software's
algorithm generates time‐temperature paths and predicts the corresponding AFT and AHe data using a Monte
Carlo approach. The predicted data are compared to the data observed and classified using the ‘goodness‐of‐fit’
(GOF) value. We aimed for models representing the geological and the general thermal history of the investigated
area incorporating independent information as constraints, such as VR data and depositional ages (Figures 2 and
3). In case of unclear depositional ages, we used the broadest time frame compiled from the literature and–in case
of Nakkehoved–tested, both depositional ages reported in the literature, that is, the more loosely defined Late
Cretaceous depositional age suggested by Håkansson et al. (1981), and the Maastrichtian depositional age sug-
gested by Svennevig et al. (2018). Also for Nakkehoved, three of the four samples that contained apatite suitable
for AFT and AHe thermochronology were derived from slightly different lithologies of the same outcrop. As all
three samples are expected to provide the same thermal history, the Nakkehoved models are particularly well
constrained. We allowed heating to temperatures as high as indicated by VR values using the conversion of
Burnham and Sweeney (1989) and tested whether the data allowed late Miocene cooling. Input parameters used
for thermal history inversions are summarized in Table S3 in Supporting Information S1.

4. Results and Interpretations
4.1. AFT and AHe Results

AFT ages and mean track lengths (MTL) were obtained from eight samples from North Greenland and four
samples from Prins Karls Forland. The results are shown in Table 1. AFT central ages range between 23 ± 5 Ma
and 67 ± 9 Ma and MTL range between 12.8 and 13.7 μm (reported here without c‐axis projection; note that for
thermal history inversions, MTL with c‐axis projections were used). AHe ages were obtained from 14 samples
(seven from both North Greenland and Prins Karls Forland), providing 34 single grain AHe ages, which range
between 21 ± 1 Ma and 106 ± 5 Ma. The results are shown in Table 2.

The distributions of AFT and AHe ages of Nakkehoved, the Prinsesse Islands, and Prins Karls Forland differ,
indicating differential thermal histories. Nakkehoved yielded the oldest ages with AFT ages between 58 and
67 Ma and well‐replicated AHe ages between 43 and 57 Ma. Slightly younger AFT ages were obtained from
the Thyra Ø formation, with a trend of older ages toward the west, although the AFT ages overlap within
uncertainty limits: The samples from Prinsesse Margrethe Island yielded AFT ages of 52 and 61 Ma. The
sample from the more lithified exposure from the eastern side of Prinsesse Thyra Island also yielded an AFT
central age of 61 Ma, whereas the sample from western Prinsesse Thyra Island yielded an AFT age of 69 Ma.
This is older than the depositional age of the Thyra Ø Formation and suggests that the AFT system was only
partially reset post‐deposition, in agreement with the VR values reported from western Thyra Island
(Håkansson et al., 1994; Paech & Estrada, 2019). Furthermore, this sample seems to contain two different age
populations (see Figure S2 in Supporting Information S1). In contrast, the AHe ages of eastern Prinsesse Thyra
Island (37–40 Ma) and from Prinsesse Margrethe Island (29–40 Ma) are older than those of western Prinsesse
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Thyra Island (∼27 Ma, excluding the 103 and 106 Ma AHe ages, which are regarded as outliers; Table 2).
Compared to the thermochronological ages of the Prinsesse Islands, AFT and AHe ages from Prins Karls
Forland are younger (Tables 1 and 2): AFT ages range between 23 and 28 Ma, whereas AHe ages from Prins
Karls Forland range between 20 Ma and 51 Ma and show over‐dispersion. A negative correlation of AHe ages
with the eU content indicates an influence of extraneous He on the AHe ages (Spiegel et al., 2009). The use of
broken grains contributed to the dispersion (Beucher et al., 2013; Brown et al., 2013), which is visible in the
eU‐He plot (Figure S4 in Supporting Information S1). We assume that the youngest AHe ages with the highest
eU contents are least influenced by extraneous He; nevertheless, an effect of He implantation cannot be ruled
out. Therefore, AHe ages from Prins Karls Forland were not included as input data for thermal history
modeling.

Interpretation of the thermal maturity data suggests that the sedimentary rocks exposed in Nakkehoved, on
Prinsesse Margrethe Island and on Prins Karls Forland have experienced post‐depositional temperatures suf-
ficient to fully reset the AFT and AHe systems. Hence, heating to maximum temperatures must have occurred
in the time period between deposition and the AFT date of the sample (Figure 4 left). For Nakkehoved, the
Prinsesse Islands and Prins Karls Forland, AFT ages are close to the depositional ages, and even without
thermal history inversions, two conclusions can be drawn from the data: (a) The Nakkehoved area experienced
heating prior to the Prinsesse Islands, which in turn may have experienced heating prior to Prins Karls Forland,
in disagreement to previous assumptions of contemporaneous heating. (b) Heating occurred prior to Miocene
final breakup, and therefore before the formation of the Knipovich Ridge, again in disagreement to previous
assumptions that the thermal maturities along the coasts of both margins reflect the thermal imprint of incipient
seafloor spreading.

Table 1
Results of AFT Analysis

Sample na ΣNsb ΣΩc [μm²] ΣPd U (±SD) [ppm] Pooled age ±1σ [Ma] Central age ±1σ [Ma] P(χ)² MSWD MTL [μm] (n)e av. Dpar [μm]

Nakkehoved, 81° 44.257ʹN 13° 30.028ʹ W 137 m, Nakkehoved Fm: greywacke, Upper Cretaceous/Maastricht

CXX‐02 22 291 60,427 1.25 17.4 (±22.3) 62 ± 8 58 ± 10 0 4.1 13.3 ± 1.4 (34) 1.9

CXX‐03 40 640 84,694 3.95 28.2 (±44.9) 59 ± 6 67 ± 9 <0.1 1.9 13.7 ± 1.5 (85) 1.9

CXX‐04 40 701 105,225 3.57 31.0 (±70.4) 62 ± 5 65 ± 8 0 2.1 13.6 ± 1.6 (68) 1.9

CXX‐11 Nakkehoved, 81° 43.381ʹ N 13° 22.676ʺ W 432 m, Nakkehoved Fm: greywacke, Upper Cretaceous/Maastricht

40 661 106,438 3.54 20.2 (±38.1) 62 ± 6 66 ± 18 0 13 13.6 ± 1.6(102) 1.8

Prinsesse Margrethe Island, 82° 04.609ʹ N 17° 47.223ʹ W 47 m, Thyra Ø Fm: sandstone, Paleocene‐Eocene

CXX‐43 28 434 60,524 3.71 32.4 (±26.5) 44 ± 5 52 ± 9 0 2.7 13.3 ± 1.4 (47) 1.9

CXX‐44 40 318 93,236 2.64 47.0 (±222.0) 49 ± 7 61 ± 11 <0.1 1.6 13.1 ± 1.7 (60) 2

CXX‐49 Prinsesse Thyra Island, 82° 02.074ʹ N 19° 02.747ʹ W 12 m, Thyra Ø Fm: sandstone, Paleocene‐Eocene

39 674 90,324 4.75 23.9 (±24.7) 57 ± 5 61 ± 6 <0.1 1.6 12.8 ± 1.5(70) 2.1

Prinsesse Thyra Island, 81° 52.359ʹ N 19° 07.717ʹ W 25 m, Thyra Ø Fm: sandstone, Paleocene‐Eocene

40 196 123,328 1.08 71.7 (±460.4) 59 ± 7 69 ± 12 0.85 0.8 13.1 ± 1.6 (87) 2.2

PKF2019‐1 Reinhardpynten, 78° 33.4560ʹ N 11° 16.9040ʹ E 17 m, Sesshøgda Fm: coarse sandstone, Eocene

24 240 65,183 3.45 57.6 (±134.4) 24 ± 4 28 ± 5 <0.1 1.9 13.0 ± 1.6 (49) 1.9

PKF2019‐5 Reinhardpynten, 78° 33.4140ʹ N 11° 16.6030ʹ E 14 m, Sesshøgda Fm: coarse sandstone, Eocene

21 165 37,178 3.13 77.7 (±98.8) 27 ± 5 28 ± 10 0 4.5 13.6 ± 1.6 (30) 2

PKF2019‐9 Peter Winterbukta, 78° 35.5770ʹ N 11° 13.2710ʹ E 2 m, Marchaiselaguna Fm: fine sandstone, Eocene‐Oligocene

39 354 103720 4.36 36.8 (±64.4) 26 ± 3 27 ± 6 0 4.1 13.3 ± 2.2 (109) 2

PKF2019‐15 Krokodillen, 78° 35.1110ʹ N 11° 6.7250ʹ E 235 m, Selvågen Fm: conglomerate, Eocene

23 320 58,534 4.45 61.3 (±51.4) 23 ± 3 23 ± 5 0 2.3 13.3 ± 2.3 (44) 2
an = Number of counted grains with U composition >0.1 ppm. bΣNs = Sum of counted spontaneous tracks in analyzed grains. cΣΩ [μm²] = Sum of area with counted
tracks in analyzed grains, for comparison: laser spot size 20 μm–ablated area ∼314 μm². dΣP= Sum of individual 238U/43Ca ratios of analyzed grain areas. eMTL [μm]
(n) = Mean track length ± standard deviation (number of measured tracks).
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Table 2
Results of AHe Thermochronolgy

Sample U [ppm] Th [ppm] Sm [ppm] He [ncc] TAEa [%] Raw age [Ma] eUb [ppm] Rsc [μm] Ftd N tere Corrected age [Ma] ± error [Ma]*

Nakkehoved–81° 44.257ʹN 13° 30.028ʹ W 137 m, Nakkehoved Fm: greywacke, Upper Cretaceous/Maastricht

CXX‐02 #1 20 4 52 0.123 1.1 37 21 50 0.68 1 55 3

CXX‐03 #2 13 58 47 0.14 0.9 36 27 52 0.67 1 54 3

CXX‐04 #2 3 30 58 0.08 1.2 36 10 46 0.62 2 57 3

CXX‐11 Nakkehoved, 81° 43.381ʹ N 13° 22.676ʺ W 432 m, Nakkehoved Fm: greywacke, Upper Cretaceous/Maastricht

#2 3 23 40 0.068 1.1 37 8 49 0.65 0 57 3

#3 4 16 45 0.033 2.5 27 8 43 0.61 0 43 2

Prinsesse Islands

CXX‐44 Prinsesse Margrethe Island, 82° 04.609ʹ N 17° 47.223ʹ W 47 m, Thyra Ø Fm: sandstone, Paleocene‐Eocene

#5 27 6 12 0.125 0.9 21 29 50 0.67 0 31 2

#6 76 25 50 0.176 0.9 24 82 41 0.61 1 40 2

#7 36 9 32 0.066 1.4 20 38 47 0.66 1 30 2

#8 35 9 25 0.105 1.1 18 37 45 0.64 0 28 1

CXX‐49 Prinsesse Thyra Island, 82° 02.074ʹ N 19° 02.747ʹ W 12 m, Thyra Ø Fm: sandstone, Paleocene‐Eocene

#3 7 27 32 0.041 2 23 14 45 0.62 1 37 2

#4 5 14 12 0.036 2.2 23 8 46 0.64 0 37 2

#5 3 14 20 0.028 1.7 29 7 44 0.61 0 48 3

CXX‐50 Prinsesse Thyra Island, 81° 52.359ʹ N 19° 07.717ʹ W 25 m, Thyra Ø Fm: sandstone, Paleocene‐Eocene

#4 42 397 22 1.216 0.3 19 134 63 0.72 0 27 1

#5 22 170 20 0.391 0.6 58 62 40 0.55 0 106 5

#6 26 131 42 0.754 0.7 64 56 46 0.62 2 103 5

#7 54 644 46 0.804 0.5 16 204 47 0.62 2 26 1

#8 26 253 26 0.302 1.2 17 85 46 0.63 0 27 1

Prins Karls Forland

PKF2019‐1 Reinhardpynten, 78° 33.4560ʹ N 11° 16.9040ʹ E 17 m, Sesshøgda Fm: coarse sandstone, Eocene

#1 30 41 58 0.071 1.5 25 39 40 0.59 1 41 2

#2 44 38 71 0.06 1.1 15 53 40 0.59 1 25 1

PKF2019‐2 Reinhardpynten, 78° 33.3680ʹ N 11° 16.3680ʹ E 10 m, Selvågen Fm: conglomerate, Eocene

#1 43 40 50 0.19 2.4 16 52 46 0.61 2 24 1

#2 21 122 76 0.056 1.3 13 50 44 0.61 1 21 1

#3 22 20 42 0.103 0.9 18 27 49 0.6 0 26 1

#4 15 4 15 0.065 12.5 28 16 41 0.62 2 45 6

PKF2019‐5 Reinhardpynten, 78° 33.4140ʹ N 11° 16.6030ʹ E 14 m, Sesshøgda Fm: coarse sandstone, Eocene

#1 26 46 48 0.159 0.7 19 36 43 0.66 2 31 2

#2 50 64 40 0.201 0.8 22 65 42 0.58 0 36 2

#3 24 18 44 0.036 2.2 20 28 41 0.68 1 33 2

PKF2019‐9 Peter Winterbukta, 78° 35.5770ʹ N 11° 13.2710ʹ E 2 m, Marchaiselaguna Fm: fine sandstone, Eocene‐Oligocene

#1 21 31 45 0.089 0.6 21 29 44 0.64 0 33 2

#2 22 31 48 0.146 0.7 20 30 48 0.61 2 29 2

PKF2019‐12 Krokodillen, 78° 35.1900ʹ N 11° 7.9390ʹ E 100 m, Selvågen Fm: conglomerate, Eocene

#1 9 38 21 0.038 1.4 18 17 41 0.67 0 30 2

#2 24 60 73 0.098 0.9 14 38 53 0.62 1 21 1

PKF2019‐14 Krokodillen, 78° 35.1010ʹ N 11° 6.7870ʹ E 218 m, Sesshøgda Fm: coarse sandstone, Eocene
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4.2. Thermal History Modeling

After complete resetting of a radiometric dating system, thermal history modeling dates the time when a sample
cooled below the closure temperature but cannot record the timing of maximum heating above the closure
temperature. This is why the stratigraphic ages of the analyzed sediments provide important constraints for
thermal history modeling, as they bracket the timing of maximum heating between deposition and onset of
cooling. For Nakkehoved, thermal history modeling narrows down a time range for the thermal event depending
on which of the two depositional ages provided in the literature are included as a modeling constraint. Model 1
uses a Late Cretaceous depositional age (Håkansson et al., 1981) and yields a time range of 85 to 70 Ma for the
thermal overprint. Model 2 incorporates a Maastrichtian depositional age (Svennevig et al., 2018) and provides a
time range of 70 ± 5 Ma for maximum post‐depositional heating. Both model solutions are in agreement with the
thermochronology data. For the time period subsequent to maximum heating, both models yield concurrent time‐
temperature paths (Figure 4a). Relatively rapid cooling after maximum heating continued until∼60Ma, followed
by slow cooling to surface temperatures. The samples do not record a thermal signal related to the Eurekan
Orogeny. The models further allow for late Miocene cooling, which we tested in agreement with the mid‐Miocene
uplift recorded on the Greenland and Barents margins (Bonow & Japsen, 2021; Dörr et al., 2013; Dörr, Lisker,
Piepjohn, & Spiegel, 2019; Døssing et al., 2016).

The Prinsesse Islands have experienced maximum heating at c. 50 Ma (Figure 4b) during the first stage of the
Eurekan Orogeny. As for at least one sample, the AFT date was not fully reset post‐deposition, the timing of
heating is better constrained for the Prinsesse Island samples, as compared to the other samples of this study
(under the assumptions that all Prinsesse Islands achieved maximum temperatures at the same time). In agreement
with the VR data, thermal history modeling suggests higher post‐depositional temperatures for the sample from
Prinsesse Margrethe Island, as compared to Prinsesse Thyra Island. Subsequent to maximum heating, the models
show fast to moderate cooling during the second stage of the Eurekan Orogeny, changing to slightly slower
cooling rates at ∼38 Ma (i.e., similar to the end of rapid exhumation associated with the second Eurekan stage on
Pearya, Vamvaka et al., 2019). Finally, the samples show slightly enhanced cooling during the Miocene, after
∼10 Ma.

For Prins Karls Forland, the thermal history models indicate post‐depositional maximum heating between 45 and
35 Ma, that is, significantly later than the maximum heating of the Prinsesse Islands or Nakkehoved. Maximum
heating is followed by rapid cooling during the early Oligocene, slowing down at∼26Ma (again similar to the end
of rapid exhumation related to the post‐Eurekan stage in Pearya (Vamvaka et al., 2019)). Cooling rates increase
again from the late Miocene onwards, in agreement with thermal models by Blythe and Kleinspehn (1998), Dörr
et al. (2012), Dörr, Lisker, Jochmann, et al. (2019), and Dörr, Lisker, Piepjohn, and Spiegel (2019). As previously
mentioned, the timing of maximum heating is constrained by the stratigraphic age of the analyzed sample. For
Prins Karls Forland, a depositional age during the early Eocene cannot be excluded, and in this case, maximum
heating at ∼50 Ma, that is, contemporaneously with the Prinsesse Islands, would be possible. Even if this would
be the case, however, both areas would differ regarding the timing of cooling through the temperature range of the
fission track partial annealing zone: The samples from Prins Karls Forland start to cool below 120°C at c. 30 Ma,
whereas Prinsesse Margrethe Island has already cooled to this temperature at c. 48 Ma.

Table 2
Continued

Sample U [ppm] Th [ppm] Sm [ppm] He [ncc] TAEa [%] Raw age [Ma] eUb [ppm] Rsc [μm] Ftd N tere Corrected age [Ma] ± error [Ma]*

#1 20 37 58 0.108 1.1 22 29 50 0.66 1 33 2

PKF2019‐16 Dawespynten, 78° 32.8000ʹ N 11° 23.1050ʹ E 1 m, Reinhardpynten Fm: sandstone, Eocene‐Oligocene

#1 17 35 39 0.231 0.6 26 25 52 0.68 2 38 2

#2 10 20 25 0.071 1.3 32 15 42 0.61 0 51 3

#3 20 50 53 0.093 1.2 24 31 40 0.59 0 39 2
*Ft‐correction with 5% error and TAE. aTAE= Total analytical error. beU= Effective Uranium content, calculated as eU=U+ 0.235Th+ 0.0053Sm. cRs= Equivalent
sphere radius. dFt = α‐ejection correction. eN ter = Number of terminations of the analyzed grain.
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5. Discussion
5.1. Late Cretaceous Continental Rifting Accompanied by a Shallow Thermal Anomaly

According to our thermochronology data (and also in agreement with the model of Japsen et al., 2021), heating of
Nakkehoved occurred between 85 and 70 Ma. Heating was associated with temperatures of 200–300°C at depths
of ∼200–300 m (Håkansson et al., 1994), that is, with an (extrapolated) geothermal gradient of approximately
700°C/km. One of the few places on Earth where similar shallow thermal‐gradient anomalies are observed today
is the Salton Sea geothermal field, adjacent to the Gulf of California (Hulen et al., 2002; Newmark et al., 1988).
Such a strong shallow thermal‐gradient anomaly as observed in Nakkehoved is hard to explain by crustal
extension alone and may instead be more likely related to a magmatic heat source (e.g., Lysak, 1992; Nirrengarten
et al., 2020). In Kronprins Christian Land, where the Nakkehoved Formation is exposed, however, no coeval
rocks of magmatic origin are known so far.

Figure 4. Visualization of AFT and AHe ages framed by the depositional ages of the sampled lithologies and results of the
thermal history modeling for Nakkehoved (a), Prinsesse Islands (b) and Prins Karls Forland (c). The mean paths of the model
results for the data retrieved from the sampled formations are shown. Depositional ages (cf. Figure 3) are introduced as
constraining boxes in the thermal models. Further constraining boxes are the temperature range indicated by the VR data
from the literature placed within the time frame between depositional age and cooling indicated by thermochronological ages
(dotted lined boxes). The dotted line in (a) refers to the model incorporating a Late Cretaceous depositional age, the solid line
refers to the model with a Maastrichtian depositional age.
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The source for magmatic heating may be located across the Atlantic Ocean on the conjugate margin. In some
paleogeographic reconstructions of the Late Cretaceous to early Paleocene, Nakkehoved is located close to
Bjørnøya on the Barents Shelf (Gion et al., 2017; Müller et al., 2016; Svennevig et al., 2017), adjacent to the
Vestbakken Volcanic Province, a site of extensive volcanic activity. However, the earliest activity there was
described as early Eocene (Faleide et al., 2010; Knutsen & Larsen, 1997; Libak et al., 2012), significantly post‐
dating the Late Cretaceous thermal overprint of Nakkehoved. Hence, volcanic activity in the Vestbakken Vol-
canic Province can be excluded as a cause of heating in Nakkehoved. Based on thermochronolgy data, Barnes and
Schneider (2019) suggested a Late Cretaceous elevated geothermal gradient for the western Svalbard margin.
They propose a connection to the High Arctic Large Igneous Province (HALIP), which affected large areas of the
Arctic Ocean and its surrounding land masses during the Cretaceous. Even though HALIP magmatic activity
makes a generally enhanced geothermal gradient in the Arctic likely, it would still not explain the extreme heat
flow of the Nakkehoved area.

Alternatively, Nakkehoved may represent an allochthonous crustal fragment which was originally situated further
northwest close to the magmatic centers of the Kap Washington Group volcanoes, and transported later to its
current location by dextral strike‐slip movements along the DGFZ. Such a scenario was already suggested by
Piepjohn et al. (2016, cf. Figure 9 therein) and is further supported by the presence of a steep fault bordering the
Nakkehoved basin (Døssing et al., 2010; Jokat, 2000). In this context, it is also notable that the fauna of the
Nakkehoved Formation is “totally distinct from the neighboring coeval Kilen Basin” (Håkansson & Schack
Pedersen, 2015, p. 165). A palinspastic reconstruction placing Nakkehoved close to the Kap Washington area of
the northern coast of Greenland is illustrated in Figure 5a.

The Kap Washington Basin comprises sediments of similar age as the Nakkehoved Basin (e.g., Batten, 1982;
Larsen, 1982; Manby & Lyberis, 2000; Tegner et al., 2011). The area has experienced extensive continental rift
volcanism between 71 and 61 Ma (Estrada et al., 2001; Tegner et al., 2011; Thórarinsson et al., 2011). Moreover,
the Kap Washington Group volcanic sequence is part of a larger magmatic province active between ∼92 and
58 Ma (Thórarinsson et al., 2011), reaching further north into the Arctic Ocean (Brotzer et al., 2022; Jokat
et al., 2016), toward the east (Døssing et al., 2010), the south (Thórarinsson et al., 2015), and toward northern and
western Ellesmere Island (Estrada et al., 2010; Estrada & Henjes‐Kunst, 2013; Naber et al., 2021). Based on the
orientation of magmatic dykes in North Greenland, at least some of this volcanic activity was associated with the
break‐up along the Gakkel Ridge and formation of the Eurasia Basin (Thórarinsson et al., 2015), even though
actual seafloor spreading of the Gakkel Ridge only commenced during the late Paleocene/early Eocene (Schreider
et al., 2019; Vogt et al., 1979).

The tectonic environment of the Kap Washington area and the Nakkehoved sedimentary basin again bears
similarities with the present‐day situation of the Salton Sea geothermal field: Both the Salton Sea Basin and the
Kap Washington area are/were situated in a continental rift basin adjacent to a (future) oceanic spreading center
associated with rhyolitic to trachytic magmatism (Estrada et al., 2001; Hulen et al., 2002; Schmitt & Hulen, 2008;
Thórarinsson et al., 2011). Like the Nakkehoved Basin, the Salton Sea Basin is a pull‐apart basin (Håkansson &
Schack Pedersen, 2015; Hulen et al., 2002; Kaspereit et al., 2016) filled by thick syntectonic strata, which
experienced greenschist‐facies overprint shortly after deposition (Hulen et al., 2002; Kaspereit et al., 2016; this
study). For the Salton Sea Basin, it is assumed that ascending hot brines caused the greenschist‐facies meta-
morphism at shallow depths (Elders, 1979), and we suggest the same mechanism of hydrothermal metamorphism
for the Nakkehoved Basin. In the Salton Sea geothermal system, the fluids were partly metalliferous (McKib-
ben & Hardie, 1997), and hydrothermal alteration caused the formation of quartz, feldspar, chlorite, epidote and
pyrite (Schmitt & Hulen, 2008), again similar to our observations, which include, amongst others, the growth of
quartz, feldspar, chlorite, epidote, hematite, rutile, and ilmenite in the host rock and quartz veins of Nakkehoved
(Supporting Information S1).

The DGFZ was already active as a dextral transform fault at the time of Kap Washington volcanism (Srivas-
tava, 1978) and was connecting the magmatic centers of North Greenland with the rifted areas of the future
Norwegian‐Greenland Sea (Figure 5a). As such, the DGFZ may not only have caused displacement of the
Nakkehoved crustal fragment, but may have also transported heat toward the area of the upcoming Eurekan
intraplate orogeny: Transform faults are usually deeply rooted (Lee et al., 2019), and provide pathways for heat
and/or fluid transport (Baietto et al., 2008; Hensen et al., 2007, 2015, 2022), particularly if they are associated
with a transtensional component (Lundin et al., 2023). We speculate that heat transfer along the DGFZ caused
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Figure 5. Schematic reconstruction of the break‐up process at the conjugate margins of eastern North Greenland (a) and western Svalbard with a focus on warming and
cooling episodes from the Late Cretaceous to the Late Miocene. The paleogeographic reconstruction refers to structural field data and the evolution of oceanic basins
with a fixed Gakkel Ridge and is based on the work of Piepjohn et al. (2019) and Kristoffersen et al. (2020). The movement of crustal blocks is not to scale. (a) Increased
heat flow and volcanic activity in the late phase of the High Arctic Large Igneous Province in the High Arctic and at Kap Washington in the Late Cretaceous (Døssing
et al., 2013; Estrada et al., 2010; Estrada & Henjes‐Kunst, 2004; Tegner et al., 2011; Thórarinsson et al., 2015). The crustal fragment of Nakkehoved is positioned closer
to the respective heat sources and rifting in the Eurasian Basin, Norwegian‐Greenland Sea and Labrador Sea/Baffin Bay area. (b) Transpessive/compressive phase of
Eureka deformation at the Svalbard‐Greenland margin with De Geer Fracture Zone (DGFZ) activity and onset of volcanism at the Yermak Plateau and the Vestbakken
Volcanic Province in the early Eocene (Faleide et al., 2010; Piepjohn et al., 2016; Riefstahl et al., 2013). Thyra Ø Basin and the Central Tertiary Basin were heated while
the geothermal gradient decreased and cooling due to inversion of fault zones occurred partially (Barnes & Schneider, 2019; Dörr, Lisker, Jochmann, et al., 2019; Japsen
et al., 2021, 2023). (c) Transtensive phase of the Eurekan with progressive lateral offset and enhanced heat flow along the DGFZ. Presumably, Prins Karls Forland was
heated, and the Central Tertiary Basin and potentially also the Thyra Ø Basin experienced inversion at that time (Barnes & Schneider, 2019; Dörr, Lisker, Jochmann,
et al., 2019). (d) Margin‐wide cooling associated with exhumation (Barnes & Schneider, 2019; Vamvaka et al., 2019) and further activity along the DGFZ. (e) Cooling
phase associated with the final opening of and uplift along the Fram Strait, leading to the formation of the recent landscape (Blythe & Kleinspehn, 1998; Bonow
et al., 2014; Dörr et al., 2012; Dörr, Lisker, Piepjohn, & Spiegel, 2019; Geissler et al., 2019).
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localized lithospheric weak zones, which are a requirement for focusing deformation during the initial phase of
intraplate orogeny (Gorczyk et al., 2012, 2013; Pysklywec & Beaumont, 2004; Raimondo et al., 2014).
Accordingly, heat dissemination from HALIP magmatic activity, which ended shortly before the onset of first
Eurekan movements, may have paved the way for the Eurekan intraplate orogeny, and the DGFZ may have
defined its location.

5.2. The Eurekan—Heating and Cooling Along Continental Transform Faults

The Prinsesse Islands experienced maximum heating at∼50Ma, shortly after their late Paleocene to early Eocene
deposition (Lyck & Stemmerik, 2000). Maximum heating postdated heating of the Nakkehoved Basin but clearly
preceded Miocene formation of the Knipovich spreading center. Our thermal history models suggest that the
Prinsesse Islands experienced maximum heating at the beginning of the Eurekan Orogeny, and became involved
in Eurekan deformation during an early stage of the orogeny, experiencing exhumation and erosion at least since
the second stage of the Eurekan, probably earlier (Figure 4b). In agreement with published VR data, our ther-
mochronology data indicate maximum temperatures well above ∼120°C (= resetting temperature for the AFT
system) for one sample from Prinsesse Margrethe Island and ∼90°C (= partial resetting of the AFT system, full
resetting of the AHe system) for Prinsesse Thyra Island in the west. The sedimentary basin of the Prinsesse Islands
(= Thyra Ø basin) received detritus from the adjacent areas, which were exhumed in response to Eurekan tec-
tonics. Japsen et al. (2021) found that the thickness of the Thyra Ø Formation at Kap Rigsdagen was less than
3 km based on VR and AFT data. The observed thermal maturity may hence simply be a result of burial without a
thermal anomaly. However, it would require strong lateral variations in deposition rates to explain the difference
in thermal maturation between Prinsesse Margrethe Island and Prinsesse Thyra Island, which are only ∼20 km
away from each other today. As a more likely scenario, we suggest that post‐depositional heating resulted from a
combination of burial and enhanced heat flow, with lateral heterogeneities regarding the distribution of heat.

Prinsesse Margrethe Island and Thyra Island are separated by a prominent fault structure (Håkansson & Schack
Pedersen, 2015), and the differences between the eastern and western parts of Prinsesse Thyra Island in terms of
lithification may also indicate the presence of a NW‐SE striking fault. In their study on coalification in North
Greenland, Paech and Estrada (2019) found differential thermal alteration in sediments present in fault zones and
concluded that this may have resulted from differential conductive heat flow and deformation along the fault
zones. The fault zones of the Thyra Ø basin are part of the Trolle Land Fault System and as such belong to the
DGFZ. During the early Eocene, the DGFZ not only connected the incipient magmatic spreading centers of the
Arctic Ocean and the Norwegian‐Greenland Sea (Figure 5b), but also included the active magmatic centers of the
Yermak Plateau north of Svalbard (Riefstahl et al., 2013) and of the Vestbakken Volcanic Province, the latter
being a transtensional segment of the DGFZ (Faleide et al., 2010), whose activity was interpreted as “magmatic
leaking” of the DGFZ (Ludin et al., 2023). Since transform faults provide an efficient transport mechanism for
heat (Baietto et al., 2008; Hensen et al., 2007, 2015, 2022), the differential thermal maturation of the Prinsesse
Islands likely represents an effect of activity of transform faults, imparting heat from deeply rooted sources to
shallow depths and using active transform fault zones as pathways.

Prins Karls Forland is also bordered by major fault zones toward the west (Hornsund Fault Zone, part of the
DGFZ) and toward the east, the latter being situated within the Forlandsundet Graben (Dallmann, 2015; Kris-
toffersen et al., 2020; Ritzmann et al., 2004). Heating of Prins Karls Forland occurred at or prior to ∼40 Ma
(Figure 4c). This is in agreement with previously published zircon fission track, Ar‐Ar and zircon (U‐Th)/He ages
from both sedimentary rocks and the basement of Prins Karls Forland (Barnes & Schneider, 2019; Blythe &
Kleinspehn, 1998; Schneider et al., 2019). At that time, the general situation was still similar to that of maximum
heating of the Prinsesse Islands, with the active DGFZ connecting magmatic spreading centers in the north and in
the south and the ongoing volcanic activity of the Vestbakken Volcanic Province (Figure 5c). Accordingly, we
suggest that heating of Prins Karls Forland resulted from the same processes as assumed for the Prinsesse Islands,
with a combination of burial and heat dissemination along the fault segment of the DGFZ.

Heating and burial of Prins Karls Forland occurred during the second stage of the Eurekan Orogeny. The
comparison between the three investigated areas all situated within the DGFZ highlights the variations of
transform movements during the Eurekan in terms of the vertical component. The Nakkehoved crustal fragment
seems to have experienced purely lateral transport without significant vertical movements (within the sensitivity
limits of low‐temperature thermochronology), whereas the Prinsesse Islands of the Greenland margin and the
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Prins Karls Forland of the Barents margin showed opposing vertical trends: the Prins Karls Forland experienced
burial and heating, while the Prinsesse Islands were exhumed and eroded.

5.3. The Post‐Eurekan Phase: Exhumation Driven by Transtension

At the end of the Eocene, seafloor spreading in the Baffin Bay/Labrador Sea area ceased and Greenland became
part of the North American plate, thus ending the Eurekan Orogeny (which was defined as deformation related to
movements of an independent Greenland plate; Piepjohn et al., 2016). The changed plate tectonic configuration
(Srivastava & Tapscott, 1986) also induced changes in the DGFZ stress regime, which now became pre‐
dominantly transtensional (Piepjohn et al., 2015). This transtensional stage was again associated with lateral
and vertical movements along segments of the DGFZ/Eurekan Belt, as demonstrated for the Pearya Terrane and
the West Spitsbergen Fold‐and‐Thrust Belt, which experienced enhanced exhumation between 34 and 26 Ma
(Blythe & Kleinspehn, 1998; Vamvaka et al., 2019). At the same time, Prins Karls Forland also shows relatively
rapid exhumation (Figure 4c, see also Barnes & Schneider, 2019) and a system of horst and graben structures
developed along the Svalbard margin, including the formation of the Forlandsundet Graben (Blinova et al., 2009;
Kleinspehn & Teyssier, 2016). Accordingly, we interpret Prins Karls Forland as a horst, which was exhumed and
thus cooled during the Oligocene in response to the formation of the Forlandsundet Graben. In addition to Pearya
and Prins Karls Forland, Oligocene exhumation is also described for other areas of the Arctic (Bonow et al., 2014;
Bonow & Japsen, 2021; Japsen et al., 2021, 2023) (Note that Japsen et al. (2023) reported Oligocene exhumation
also for the Wandel Sea Basin including Nakkehoved and the Thyra Ø Formation. It is not clear from their study
whether Oligocene cooling is constraint‐driven or actually required by their thermochronology data. In any case,
we cannot confirm such a period of Oligocene cooling for the Wandel Sea Basin from our data).

Oligocene exhumation was not only related to tectonic denudation, but was also associated with erosional
denudation, as suggested by the widespread deposition of Oligocene sediments, such as the Sarstangen Formation
of the eastern Forlandsundet Graben (Eidvin et al., 1998; Kleinspehn & Teyssier, 2016; Schaaf et al., 2021), strata
west of Bjørnøya (Eidvin et al., 1998) and from the Hovgård Ridge (Boulter & Manum, 1996), and presumably
the Renardodden Formation (Dallmann, 2015; Livšic, 1977; Thiedig et al., 1980). The occurrence of reworked
Eocene dinoflagellate cysts in these Oligocene sediments (Boulter & Manum, 1996; Eidvin et al., 1998) confirms
the recycling of Eocene deposits during rapid cooling in the Oligocene. This is in agreement with our thermal
history models for Prins Karls Forland, which we interpret as heating related to a combination of enhanced heat
flow and burial and hence sediment deposition until ∼40 Ma, followed by (erosion‐related) cooling and thus
removal of the Eocene sedimentary cover.

As demonstrated in this study, tectonic exhumation continued until shortly before the initiation of final conti-
nental breakup along the Fram Strait. Oligocene transtension (and related exhumation) reactivated faults that were
previously active during the compressional and transpressional stages of the Eurekan Orogeny (e.g., Kristoffersen
et al., 2020). Faults are zones of localized damage and act as preferred pathways for fluid and heat transport, thus
causing structural weakening of the crust, as they form heterogeneities resulting from grain size reduction,
generation of fracture networks, and changes of the mineral assemblage induced by fluid‐rock interaction
(Raimondo et al., 2014, with references). For initiating the final breakup, the Knipovich Ridge propagated toward
the north along the former Eurekan Belt (Crane et al., 1988), exploiting the zones of crustal weakness inherited
from the Eurekan and post‐Eurekan fault movements along the DGFZ, which facilitated crustal rupture.

5.4. Final Breakup: Evolution of a Divergent Margin and the Deepening of the Fram Strait

Spreading along the Knipovich Ridge presumably initiated in the early Miocene (Dumais et al., 2020; Jokat
et al., 2016). Opening and subsequent widening and deepening of the Fram Strait was related to the uplift of pre‐
Miocene erosion surfaces in Greenland and Svalbard (Bonow & Japsen, 2021; Dörr et al., 2013; Dörr, Lisker,
Piepjohn, & Spiegel, 2019), and to the formation of a middle to late Miocene unconformity in the offshore
sediments of the Greenland shelf, detected by seismic data (Døssing et al., 2016). Previous thermal history models
of thermochronology data from Greenland and Svalbard also frequently involve middle or late Miocene cooling
(Blythe &Kleinspehn, 1998; Dörr et al., 2013; Dörr, Lisker, Piepjohn, & Spiegel, 2019; Japsen et al., 2021, 2023),
but these cooling periods are poorly constrained and differ in terms of their timing. We included Miocene cooling
as a constraint in our thermal history inversions. Our models show that samples from the Greenland and Svalbard
margins experienced final cooling in the late Miocene. This may be associated with a preceding, short‐lived
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reheating event (Figure 5e), which may be caused by enhanced heat flow associated with seafloor spreading.
However, even though our models are in agreement with some Miocene heating/cooling, they do not necessarily
require it for reproducing our thermochronology data. Hence, the data neither prove nor disapprove Miocene
changes in the thermal regime and the thermal imprint of final continental breakup and opening of the Fram Strait
remains enigmatic.

6. Conclusions
For this study, we investigated Late Cretaceous to Paleogene sedimentary rocks exposed along coastal areas on
both sides of the Fram Strait. These sedimentary rocks are characterized by thermal maturation values signifi-
cantly exceeding those of their neighboring sedimentary rocks of similar ages and are therefore viewed as
reflecting thermal anomalies. To relate these anomalies to each other and to the plate tectonic evolution of the
Fram Strait area, we analyzed the sedimentary rocks by AFT and (U‐Th)/He thermochronology and reconstructed
their thermal histories from Late Cretaceous rifting to final continental breakup during the Miocene:

1. Late Cretaceous deposits exposed in Nakkehoved along the Greenland margin were—largely statically heated
during the latest Cretaceous, associated with an extremely high geothermal gradient and the formation of
quartz veins containing feldspar, chlorite, epidote, hematite, rutile, and ilmenite. These characteristics can be
compared to recent expressions of a shallow thermal anomaly associated with volcanism in the Salton Sea
geothermal field. Due to the differences in terms of the thermal history and the mineralogical and faunal
assemblages, we interpret the fault‐bound Nakkehoved area as an allochthonous crustal fragment, which was
originally situated further north in the vicinity of the Kap Washington Group volcanic centers, and which was
transported to its present position by lateral movements along the DGFZ. As movements along the DGFZ were
presumably also associated with heat and fluid transfer, we suggest that the activity of the DGFZ caused
thermal weakening of the crust, which facilitated the formation of the Eurekan intraplate orogen.

2. Heat input into the crust via the DGFZ, connecting active volcanic centers north and south of the Fram Strait,
continued during the Eocene, caused heating of the Thyra Ø Basin along the Greenland margin during the first
stage of Eurekan Orogeny, and heating of Prins Karls Forland along the Barents margin during the second
stage. The horizontal component associated with the lateral movements differed strongly between the different
segments of the DGFZ.

3. Lateral movements of the DGFZ and associated exhumation continued post‐Eurekan, caused exhumation of
Prins Karls Forland during the early Oligocene, and lasted until ∼26 Ma, that is, shortly before final conti-
nental breakup and initial opening of the Fram Strait. We suggest that ongoing fault activity caused further
structural weakening along the DGFZ. These inherited zones of crustal weakness were exploited during the
northward propagation of the Knipovich Ridge in the course of final continental breakup.

4. Our thermal history models are in agreement with an additional late Miocene cooling event associated with the
deepening and widening of the Fram Strait. This cooling event, however, is not necessarily required for
reproducing our thermochronology data.

All thermal and exhumational processes observed from our data can be explained by movements and heat/fluid
transfer along the DGFZ. Our study adds to the growing evidence for the important role of structural inheritance
and continental transform faults for continental rifting and the development of divergent continental margins.

Data Availability Statement
Details on the analytical procedure, thin section and EMP analyses, thermal history inversions as well as detailed
AFT and AHe data are available in the supporting information to this manuscript. The AFT and AHe data as well
as the supporting information (Meier et al., 2024) are available at zenodo.org via https://doi.org/10.5281/zenodo.
10634233 with a Creative Commons Attribution 4.0 International license.
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