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Abstract:

Paleontology provides insights into the history of the planet, from the 
origins of life billions of years ago to the biotic changes of the recent. The 
scope of paleontological research is as vast as it is varied, and the field is 
constantly evolving. In an effort to identify “Big Questions” in 
paleontology, experts from around the world came together to build a list 
of priority questions the field can address in the years ahead. The 89 
questions presented herein (grouped in 11 themes) represent 
contributions from nearly 200 international scientists. These questions 
touch on common themes including biodiversity drivers and patterns, 
integrating data types across spatiotemporal scales, applying 
paleontological data to contemporary biodiversity and climate issues, and 
effectively utilizing innovative methods and technology for new 
paleontological insights. In addition to these theoretical questions, 
discussions touch upon structural concerns within the field, advocating for 
an increased valuation of specimen-based research, protection of natural 
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heritage sites, and the importance of collections infrastructure, along with 
a stronger emphasis on human diversity, equity, and inclusion. These 
questions offer a starting point—an initial nucleus of consensus that 
paleontologists can expand on—for engaging in discussions, securing 
funding, advocating for museums, and fostering continued growth in 
shared research directions.
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46 Abstract.—Paleontology provides insights into the history of the planet, from the origins of life 

47 billions of years ago to the biotic changes of the recent. The scope of paleontological research is 

48 as vast as it is varied, and the field is constantly evolving. In an effort to identify “Big Questions” 

49 in paleontology, experts from around the world came together to build a list of priority questions 

50 the field can address in the years ahead. The 89 questions presented herein (grouped in 11 

51 themes) represent contributions from nearly 200 international scientists. These questions touch 

52 on common themes including biodiversity drivers and patterns, integrating data types across 

53 spatiotemporal scales, applying paleontological data to contemporary biodiversity and climate 

54 issues, and effectively utilizing innovative methods and technology for new paleontological 

55 insights. In addition to these theoretical questions, discussions touch upon structural concerns 

56 within the field, advocating for an increased valuation of specimen-based research, protection of 

57 natural heritage sites, and the importance of collections infrastructure, along with a stronger 

58 emphasis on human diversity, equity, and inclusion. These questions offer a starting point—an 

59 initial nucleus of consensus that paleontologists can expand on—for engaging in discussions, 

60 securing funding, advocating for museums, and fostering continued growth in shared research 

61 directions.

62  

63 Resumen.—La paleontología permite conocer la historia del planeta, desde los orígenes de la 

64 vida hace miles de millones de años hasta los cambios bióticos de épocas recientes. El ámbito de 

65 la investigación paleontológica es tan vasto como variado y está en constante evolución. En un 

66 esfuerzo por identificar las "grandes preguntas" de la paleontología, expertos de todo el mundo 

67 se reunieron para elaborar una lista de cuestiones prioritarias que el campo puede abordar en los 

68 próximos años. Las 89 preguntas aquí presentadas (agrupadas en 11 temas) representan las 
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69 contribuciones de casi 200 científicos internacionales. Estas preguntas se refieren a temas 

70 comunes, entre los que se incluyen los motores y patrones de la biodiversidad, la integración de 

71 tipos de datos a través de escalas espacio-temporales, la aplicación de datos paleontológicos en 

72 cuestiones contemporáneas de biodiversidad y clima, y la utilización eficaz de métodos y 

73 tecnologías innovadoras para obtener nuevos conocimientos paleontológicos. Además de estas 

74 interrogantes teóricas, los debates abordan inquietudes estructurales dentro del campo, y abogan 

75 por una mayor valoración de la investigación basada en especímenes, la protección de los sitios 

76 del patrimonio natural y la importancia de la infraestructura de las colecciones; junto con un 

77 mayor énfasis en la diversidad humana, la equidad y la inclusión. Estas preguntas representan un 

78 punto de partida—un núcleo inicial de consenso que los paleontólogos pueden ampliar—para 

79 fomentar debates, obtener financiación, abogar por el apoyo continuo de los museos y estimular 

80 el crecimiento continuo en direcciones de investigación compartidas.

81

82 Riassunto — La paleontologia offre spunti fondamentali per comprendere la storia del pianeta, 

83 dalle origini della vita miliardi di anni fa fino ai cambiamenti biotici più recenti. L'ambito della 

84 ricerca paleontologica è tanto vasto quanto diversificato e rappresenta un campo in continua 

85 evoluzione. In questo studio, esperti provenienti da tutto il mondo si sono riuniti per redigere un 

86 elenco di “Grandi Domande” prioritarie che la paleontologia potrà affrontare nei prossimi anni. 

87 Le 89 domande qui presentate, raggruppate in 11 temi, rappresentano il contributo di circa 200 

88 scienziati internazionali. Queste domande riguardano tematiche come i meccanismi e i pattern di 

89 biodiversità, l'integrazione di varie tipologie di dati su scale spazio-temporali multiple, 

90 l'applicazione delle conoscenze paleontologiche ai problemi attuali di crisi della biodiversità e 

91 climatica, e l'uso efficace di metodi e tecnologie innovative per ottenere nuove intuizioni 
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92 paleontologiche. Oltre a questi temi teorici, la discussione si focalizza su problematiche 

93 strutturali del campo, promuovendo una maggiore valorizzazione della ricerca basata sui 

94 campioni, la protezione dei siti di interesse culturale e paleontologico, e l'importanza delle 

95 infrastrutture per preservare le collezioni, insieme a una crescente enfasi su un apporto 

96 multiculturale, equo e inclusivo. Queste domande costituiscono un punto di partenza — un 

97 nucleo di consenso iniziale che i paleontologi possono espandere — per avviare discussioni, 

98 ottenere finanziamenti, promuovere i musei e favorire una crescita continua verso direzioni 

99 condivise di ricerca.
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551 Introduction

552 Paleontology offers an important scientific contribution by asking questions about life 

553 throughout the billions of years of Earth’s history. The field itself has expanded from one based 

554 principally on collecting and documenting fossils to a hypothesis-driven, evidence-based field of 

555 inquiry using increasingly-complex data, analytical approaches, and computational techniques. 

556 Paleontologists examine a range of topics about the history of life, including extinction, the 

557 evolution of organisms, biodiversity, the impact of climate changes, and the complex dynamics 

558 between life and other components of the Earth system. These comprehensive studies of life in 

559 the past provide critical context for understanding life on the planet today and the possible 

560 responses to ongoing environmental changes. 

561 As in all scientific disciplines, the questions pursued by paleontologists fall on a 

562 spectrum, from large overarching questions that are central to the discipline to questions that are 

563 more specific and focus on smaller scales, pressing topics, or contribute a component for 

564 addressing broader questions. The large overarching questions are likely to be persistent, but we 

565 can begin to address these grand themes by asking specific questions at various levels of 

566 resolution. For example, while a consensus exists on the principal features of the broad trajectory 

567 of life preserved in the fossil record, continued and closer examination of the record is required 

568 to resolve the details of evolutionary processes, environmental perturbations, and random effects 

569 that led to the modern configuration of life on Earth. As the resolution of studies becomes more 

570 specific, questions can range from “to which taxon does this specimen belong?” to questions 

571 such as “what is the role of abiotic and biotic interactions in driving biodiversity patterns?” 

572 Whereas “smaller” questions like the former are foundational to studying paleontology and merit 

573 support on their own, it is questions such as the latter (i.e., a “big question”) that are the scope of 
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574 this paper, as they indicate the current state of the discipline and its aims for future scientific 

575 development.

576 Through the “Big Questions” project detailed herein, we seek to provide a roadmap for 

577 how paleontological research might develop in the coming years, as prioritized by members of 

578 the paleontological community. A big question (BQ) is defined here as an open-ended question 

579 of high scientific importance that can be answered within a reasonable timeframe. Defined in this 

580 way, BQs become priority questions that can be used to emphasize the importance of the 

581 discipline to the larger research community, as well as to direct scientific effort and research 

582 funding (Sutherland et al. 2009; Willis and Bhagwat 2010; Parsons et al. 2014; Seddon et al. 

583 2014). For our purposes, we considered a “reasonable timeframe” to be several years, though 

584 some questions may require a longer duration to address (e.g., the duration of a career). The 

585 amount of time needed to answer a BQ with precision and accuracy is variable and dependent on 

586 many factors, including technological advances and available resources.

587 The answer to a BQ should represent a substantive leap forward in the community's 

588 understanding of an issue or address a knowledge gap. “Scientific importance” requires 

589 examination of the perceived value of a BQ within the paleontological community, the broader 

590 scientific community, and its transference to society at large. Incorporating a diverse set of 

591 individuals engaged in paleontological research increases the confidence with which we can 

592 present research directions that can justifiably be defined as scientifically important to the 

593 international paleontological community. As such, the BQs project represents a democratic 

594 perspective of the paleontological discipline by individuals conducting germane research; we 

595 acknowledge that this effort was influenced by the opinions of those who participated, who 

596 represent a small percentage of the global paleontological community. 
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597 As the discipline of paleontology continues to grow in scope and application, 

598 paleontologists have a responsibility to routinely reflect on, criticize, discuss, and refine research 

599 directions, the best practices for conducting professional activities, and the cohesion of the 

600 discipline across geopolitical boundaries. Here we present the outputs of such an effort, 

601 providing an examination of the current state of paleontological research as expressed by the 

602 questions pursued in this discipline.

603

604 Methods

605 Project Contributors

606 The “Big Questions” project is a community initiative, coordinated through the 

607 PaleoSynthesis Project, that sought to engage a broad range of scientists working in paleontology 

608 and related disciplines (e.g., archaeology, biology, climate science, geology). Members of the 

609 Big Questions coordination team (JAS, WK) invited participation from the community through 

610 three solicitations requesting the submission of BQs in 2020 and 2021. The first solicitation was 

611 distributed in June 2020 using the PaleoNet listserver and to members of societies including the 

612 Palaeontological Association, Paleontological Society, and Paläontologische Gesellschaft. To 

613 reach a broader audience, the coordination team issued a second call in January 2021, again 

614 using PaleoNet but expanding to include social media (Facebook, Twitter - now X) and 

615 listservers for the Ecological Society of America (Ecolog-L) and the Conservation Paleobiology 

616 Network (CPN-L).

617 In March 2021, the first virtual, plenary meeting was held for those individuals who 

618 indicated they would like to contribute to the project. As an outcome, participants in the meeting 

619 recognized that the group was dominated by individuals from the United States and Europe 
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620 (Table 1). Consequently, a third solicitation was distributed in late March 2021 using the same 

621 approach as the second solicitation, this time with versions in English, French, Italian, Chinese, 

622 and Spanish (reflecting widely spoken language proficiencies in the existing group of 

623 participants). Participants involved via the first two solicitations were encouraged to use their 

624 personal networks to invite participants from places and with backgrounds not already 

625 represented in the project.

626  

627 Working Group Assignments

628 As a part of the first two solicitations, participants were asked to submit questions they 

629 felt were outstanding in the field of paleontology (Table 2). The coordination team then created 

630 twelve themes that captured as much of the variation as possible from the submitted questions. 

631 Individuals who joined the BQ project during the third solicitation were asked to self-select the 

632 best category for their questions since the twelve themes had already been established. All 

633 assignments (from all solicitations) were checked for consistency and, when a question pertained 

634 to multiple themes, it was assigned to each relevant theme (Figure 2). Ten of the groups focused 

635 on scientific questions (one of which was dropped due to overlaps with questions in related 

636 groups; Table 2) and two groups centered on structural issues relating to how paleontology is 

637 practiced, as scientific questions and scientific practice are not distinct domains.

638 All participating individuals were asked to rank their top five theme preferences (Table 2) 

639 and assigned to their highest available preference, while attempting to balance numbers and 

640 diverse group composition using inferences regarding aspects to participants’ identities (e.g., 

641 career stage, country, gender identity). Such inferences are undoubtedly flawed (e.g., 

642 institutional affiliation may not reflect a participant’s nationality), but were an attempt to form 

Page 34 of 113

Cambridge University Press

Paleobiology



For Peer Review

30

30

643 diverse groups using incomplete information. Participants were given the additional option to 

644 join one of the groups addressing structural issues (Fundamental Issues, Looking Inward and 

645 Outward). All participants were given the option to volunteer as a working group leader, and one 

646 to three leaders were selected for each group from those volunteers, with consideration for 

647 representation of the diverse backgrounds of individuals participating in the project.

648  

649 Refinement of Big Questions

650 Under the direction of working group leaders, the working groups were tasked with 

651 refining the set of questions assigned to their theme (Supplemental Material 1) into a condensed 

652 set of 8 – 12 preliminary questions. As a guide for this process, all were asked to consider the 

653 following discrete criteria (from Sutherland et al. 2009) for what a BQ entails:

654 1. Addresses an important gap in knowledge

655 2. More than just a general topic area (e.g., “climate change”)

656 3. Answerable through a realistic research design

657 4. Has a spatial and temporal scale that can be addressed by a research team

658 5. Has a factual answer that does not depend on value judgments

659 6. Tends not to be situationally dependent (i.e., answerable with “it all depends”)

660 7. Is not likely to be answerable with “yes” or “no”

661 Groups accomplished this goal through a combination of strategies, chosen by group leaders, 

662 including one or more of: (1) separating questions into sub-themes and condensing on common 

663 ideas; (2) formation of subgroups to evaluate subsets of questions; (3) virtual meetings to discuss 

664 refinements; and, (4) drafting of questions to combine those that existed or cover omitted topics.
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665 Following refinement of the preliminary questions by each group, all questions were 

666 compiled for cross-group comments. Participants were asked to suggest revisions, evaluate the 

667 importance of each question, and identify overlaps. The coordination team then compiled and 

668 summarized responses according to the importance of questions and overlaps. Group leaders 

669 coordinated efforts within and among groups to refine the questions further on the basis of this 

670 compiled information (Tables 3 – 13). Finally, each working group drafted text to contextualize 

671 their questions, forming the first version of this manuscript.

672  

673 The Big Questions in Paleontology

674 The three solicitations for submission of Big Questions resulted in 528 contributed questions. 

675 (Supplemental Material 1: Raw Questions). The number of questions assigned to a given theme 

676 ranged from 14 to 76 (Table 2). Groups refined these questions (Supplemental Material 1: 

677 Preliminary Questions) to a preliminary list including 4 – 16 questions from each group (Table 

678 2).

679 After feedback from all BQ participants, working groups again refined their questions, 

680 producing 5 – 10 final questions from each group (Table 2; Figure 1). The BQs are available in 

681 Tables 3 – 13 (in non-ordered lists from each group), clustered in related themes, starting with 

682 questions pertaining to topics that might affect any paleontological study (e.g., preservation, 

683 scaling, taxonomy). In the eleven sections that follow, explanatory text accompanies the set of 

684 questions from each working group, with questions referred to in the text by working group 

685 acronyms (see section headers and tables for acronyms) and non-ordered, unranked numbering. 

686 Given the strong relationships among different areas of research in paleontology, there are 

Page 36 of 113

Cambridge University Press

Paleobiology



For Peer Review

32

32

687 overlaps in the topics of some questions, which can be taken to indicate important, cross-cutting 

688 themes within the discipline (Figure 2).

689

690 The Adequacy of the Fossil Record (AFR; Table 3)

691 The fossil record is our primary window into the origin and evolution of life on Earth, 

692 providing the only direct line of evidence for these events. Yet, the fossil record is composed 

693 primarily of organisms with anatomical, behavioral, and ecological attributes that enhance their 

694 preservation potential (AFR1, Table 3; Kidwell and Flessa 1995; Behrensmeyer et al. 2000; 

695 Sansom et al. 2010; Klompmaker et al. 2017; Saleh et al. 2020, 2021). Preservational biases are 

696 also often exacerbated by other biases introduced throughout the life of specimens (AFR2; e.g., 

697 Seilacher et al. 1985; Behrensmeyer et al. 2000; Louys et al. 2017; Krone et al. 2024)—for 

698 example, those relating to acquisition and curation, collecting, digitization, geography and 

699 geopolitics, publication, specimen preservation, storage, and transport (Flessa et al. 1992; 

700 Whitaker and Kimmig 2020; Raja et al. 2022; Johnson et al. 2023). Methods development for 

701 evaluating and mitigating these biases continues to be an important area of research (AFR1 – 3; 

702 e.g., Dunhill et al. 2014; Stewart et al. 2021; De Baets et al. 2022; Na et al. 2023; Antell et al. 

703 2024; Hohmann et al. 2024). Adding to the challenge presented by these biases, maintenance of 

704 existing collections and capacity for new collections are threatened by a lack of funding, 

705 curatorial staff, and adequate storage facilities, both physical and digital (AFR3; Allmon et al. 

706 2018; Marshall et al. 2018).

707 Differences in data collection and reporting methods can compound biases in 

708 paleontological studies, as researchers have specific purposes when they acquire data (AFR4) 

709 and these idiosyncrasies can limit future uses of the data. To reduce duplication of data, reduce 
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710 research costs, and increase versatility, it is imperative to document and clearly communicate 

711 data acquisition and management practices (e.g., as through the extended specimen concept; 

712 Lendemer et al. 2020; Hardisty et al. 2022; Monfils et al. 2022). Establishing best practices in 

713 these areas will benefit paleontology as we move towards a Big Data future (i.e., data 

714 characterized by great variety, volume, and/or velocity; Balazka and Rodighiero, 2020), and 

715 digitization of existing and new specimens is becoming increasingly common (AFR2; Berents et 

716 al. 2010; Allmon et al. 2018).

717 Methodological, imaging, and analytical advances—geochemical approaches in 

718 particular (e.g., non-traditional stable isotopes, synchrotron, handheld XRF)—have created new 

719 opportunities for evaluating preservational processes (e.g., Gueriau et al. 2016; Teng et al. 2017). 

720 For example, advances in organic geochemistry have increased the capacity to extract 

721 biomolecules and biomarkers from fossil and sedimentary archives (e.g., Schweitzer et al. 2008; 

722 Briggs and Summons 2014; Vinther 2015; Falk and Wolkenstein 2017; Demarchi 2020; 

723 Wiemann et al. 2020; McNamara et al. 2021). However, it remains to be seen how deep in time 

724 biomolecules can be found and with what accuracy and resolution the methods can be applied 

725 through geological time (AFR5). Inorganic geochemistry has also advanced fundamentally in the 

726 last decades, as stable isotope (traditional and non-traditional) and clumped isotope systems 

727 provide new insights in studies of pCO2, pH, paleophysiology, mass extinctions and the 

728 paleobiology and paleoenvironment of fossil taxa (e.g., Casey and Post 2011; Cook et al. 2015; 

729 Kimmig and Holmden 2017; Martin et al. 2017; Chen et al. 2018; Kral et al. 2022; Jung et al., 

730 2024). Geochemical advances, and continuing improvements to technology and equipment, also 

731 are expanding the scope of paleontology by enhancing our understanding of diagenesis, 
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732 morphology, paleoecology, and paleoclimate (AFR6, AFR7; e.g., Smith et al. 2021; Abdelhady 

733 et al. 2023; Comans et al. 2024).

734 The changing global environment also presents new challenges and opportunities for 

735 sampling the fossil record (AFR8). For example, as sea level rises and extreme weather events 

736 become more common, some existing fossil collecting sites along the coasts may be submerged 

737 (e.g., chalk deposits in Europe), while the same processes might lead to the exposure of new sites 

738 (e.g., Reimann et al. 2018; Vousdoukas et al. 2022). It is also likely that rising temperatures 

739 causing the loss of permafrost and glacial ice will expose previously inaccessible outcrops that 

740 offer new opportunities for research, even as the changing climate alters erosional processes that 

741 may influence fossil exposure and quality (AFR8; e.g., Clark et al. 2021).

742  

743 Scaling Ecological and Evolutionary Processes and Patterns (SEP; Table 4)

744 The scale of an investigation influences the observation and interpretation of ecological 

745 and evolutionary processes (SEP1 – 4, Table 4). In paleontology, scale often relates to the 

746 temporal and spatial dimensions of taxa, patterns, or processes (SEP2, SEP3). Ecological and 

747 evolutionary processes occur at multiple spatiotemporal scales but identifying or demonstrating 

748 their significance at all scales is challenging and rare (SEP4; Jablonski 2008; Price and Schmitz 

749 2016; Rapacciuolo and Blois 2019; Louys et al. 2021; Liow et al. 2023). Evaluating the effects 

750 of scaling in the fossil record is further complicated by the need to identify and address the 

751 incompleteness of the record (SEP3, SEP5; Peters and Heim 2011; Benson et al. 2021; and see 

752 The Adequacy of the Fossil Record). The data captured in the fossil record are imperfect and 

753 biased, providing only a glimpse of longer and shorter processes, patterns, and interactions 

754 (SEP3, SEP5 – 7; Faith et al. 2021; Flannery-Sutherland et al. 2022; Dunne et al. 2023).
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755 Paleontological research into the ecological and evolutionary drivers of observed patterns 

756 is flourishing, as emergent research areas—for example, conservation paleobiology (Dietl et al. 

757 2015; Dillon et al. 2022), geobiology (Knoll et al. 2012), phylogenetic paleoecology (Lamsdell 

758 et al. 2017)—bridge subdisciplines and broach connections between the micro- and macro-

759 evolutionary scales (SEP2, SEP5 – 7; e.g., Machado et al. 2023; Rolland et al. 2023). 

760 Paleontologists must grapple with demonstrating links to the biology of modern organisms (i.e., 

761 neontology) in studies at various scales in the fossil record (Dietl et al. 2019; Rapacciuolo and 

762 Blois 2019). Unifying paleo- and neontological data can reveal more about the natural world 

763 than either could do in isolation (e.g., Hlusko et al. 2016, Smith et al. 2023b); however, the 

764 efficacy of cross-scale analyses needs continued examination. Macroecology (Brown, 1995; 

765 McGill 2019) may provide one option to incorporate a conceptual basis for this work as, for 

766 example, studies of the metacommunity concept—a set of local communities that are linked by 

767 dispersal of multiple, potentially interacting species (Leibold et al. 2004)—provide a framework 

768 for examining scale-based problems. A tenet of this concept is that the study of local patterns and 

769 processes is not sufficient to understand the structure and dynamics of a metacommunity 

770 (Leibold et al. 2004). Studying metacommunity composition and community assembly over 

771 space and time acknowledges the fluidity and connection of communities and seeks common 

772 patterns across metacommunities (SEP6; e.g., Muscente et al. 2018, 2022; Eden et al. 2022; 

773 Gibert et al. 2022). The relationship between the processes on evolutionary scales, their relative 

774 influence, and fluctuations through time continue to be important topics (SEP2, SEP4, SEP8).

775 Over the course of Earth's history, the biosphere has had a profound impact on the 

776 geosphere in ways that we are still working to fully comprehend (SEP9). Studying the interaction 

777 from an abiotic perspective highlights the feedback mechanisms and interactions within the 
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778 Earth-life system, as traces of life are ubiquitous, from Earth’s mantle to the atmosphere (Pawlik 

779 et al. 2020; Giuliani et al. 2022).

780  

781 Phylogenetics, Taxonomy, and Systematics (PTS; Table 5)

782 The fossil record contains unique information on the diversity of previous life forms, and 

783 their relationships to one another, which provides retrospective context for cataloging and 

784 understanding life on the planet today. Phylogenetics is often perceived simply as a tool for 

785 inferring evolutionary relationships or organizing biodiversity but also can be seen more broadly 

786 as a framework for hypothesis testing and reconstructing past events that are not directly 

787 observable in the fossil record (Bromham 2016). This can include estimating species divergence 

788 times, studying trait evolution, or quantifying diversification dynamics. Although speciation and 

789 extinction have a long history of study, these processes are complex and some aspects require 

790 further study to improve our understanding (PTS1, PTS2, Table 5). By adopting new 

791 methodologies, improving data collection practices, and integrating various types of data 

792 centered around current, carefully constructed taxonomies, we can unlock the full potential of 

793 hypothesis testing using phylogenetic approaches (PTS3).

794 Phylogenies are often constructed using molecular data, but there are many benefits to 

795 including information from other sources, such as the fossil record (PTS4, PTS5; Parham et al. 

796 2012; Lee and Palci 2015; Mongiardino Koch et al. 2021; Wright et al. 2022). Other data 

797 sources, such as developmental biology, may also prove useful in phylogenetic inference (PTS6). 

798 The field requires a multi-disciplinary perspective informed by computer and data science, 

799 ecology, geology, geochronology, phylogenomics, and statistics (Parham et al. 2012; Liow et al. 

800 2023). Phylogenomics and deep learning can help to discern and organize biodiversity, but their 
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801 accuracy will always depend on the quality of their input data, which necessitates reliable 

802 systematics and taxonomic identifications (e.g., Bortolus 2008). The accuracy of phylogenetic 

803 analyses that include fossils relies on information about taxonomies and their associated 

804 uncertainties (Bortolus 2008; Parham et al. 2012; Soul and Friedman 2015; Barido-Sottani et al. 

805 2023). Taxonomy and comparative anatomy are invaluable in understanding diversification 

806 history and character evolution, establishing homologies, quantifying variability, and generating 

807 testable hypotheses using phylogenetics and species delimitation methods (Barido-Sottani et al. 

808 2023). These research fields must be supported in their own right (Agnarsson and Kuntner 2007; 

809 Löbl et al. 2023, Smith et al. 2023c).

810 Integrating different data types requires explicit process-based models (PTS7, PTS8), 

811 such as the fossilized birth-death model, which models speciation, extinction, and fossilization 

812 simultaneously (Stadler 2010; Heath et al. 2014). Combined with models of molecular and 

813 morphological evolution, this framework allows for statistical inference of dated phylogenies 

814 that include extant and fossil taxa. Most existing models treat speciation and character evolution 

815 as independent (Warnock and Wright 2020), but further refinement of this framework can 

816 illuminate the tempo and mechanisms of speciation (PTS1). Comprehensive analyses also 

817 require approaches that capture uncertainty and biases while concurrently allowing for varied 

818 approaches to weighting of molecular and morphological data (PTS9). We can construct explicit 

819 Bayesian hierarchical models to incorporate different data types while accounting for uncertainty 

820 in a principled and intuitive way (e.g., Höhna et al. 2016; Bouckaert et al. 2019; Ronquist et al. 

821 2021). It is also imperative to assess the trade-off between data availability, computational 

822 efficiency, and model complexity. Simulations play an important role in confronting this 

823 challenge and parameter identifiability issues associated with phylogenetic models, by helping to 
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824 explore the performance of available methods, potential limitations of data, and the expectations 

825 under null hypotheses (Barido-Sottani et al. 2019; Louca and Pennell 2020; Höhna et al. 2022; 

826 Mulvey et al. 2024).

827 Environmental and geological processes influence the course of evolution (e.g., Arakaki 

828 et al. 2011; Hannisdal and Peters 2011; De Baets et al. 2016; Kocsis et al. 2021). Incorporating 

829 these processes into phylogenetics will elucidate their interaction with biological events, linking 

830 large-scale processes, such as the extent and timing of climatic change, continental breakup, or 

831 changes in depositional rates through time with evolutionary phenomena (PTS10).

832  

833 Biodiversity Dynamics in Space and Time (BST; Table 6)

834 Quantifying and interpreting biodiversity dynamics over time is a long-standing theme in 

835 paleontology (Phillips 1860; Sepkoski et al. 1981; Benson et al. 2021), leading to questions such 

836 as whether there are constraints on global biodiversity (BST1, Table 6; Alroy et al. 2008; 

837 Harmon and Harrison 2015; Rabosky and Hurlbert 2015; Close et al. 2020). Given the challenge 

838 of fully documenting modern biodiversity (Mora et al. 2011), we cannot expect to know absolute 

839 biodiversity in the past, but we can estimate relative changes in biodiversity. Genuine trajectories 

840 of biodiversity through time can be uncovered only if we can account for spatial differences and 

841 temporal changes in preservation potential, as well as other biases particular to the fossil record 

842 (e.g., Smiley 2018; Krone et al. 2024; and see The Adequacy of the Fossil Record). By dissecting 

843 the components of these trajectories, we can identify drivers of originations and extinctions in 

844 deep time (BST5; and see Adaptations, Innovations, Origins). To fully understand biodiversity, 

845 we must first agree on the most effective methods for measuring biodiversity over different time 

846 scales (BST6; see Scaling Ecological and Evolutionary Processes and Patterns). Such a 
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847 consensus can help address pressing questions, including whether modern biodiversity is an 

848 outlier in geological time (BST7).

849 Spatial aspects of biodiversity, such as the latitudinal diversity gradient (Humboldt 1808), 

850 are as important as temporal patterns. An extensive literature explores causes of the latitudinal 

851 diversity gradient, including its dynamics over geological time scales (Jablonski et al. 2006; 

852 Allen et al. 2020, 2023; Zacaï et al. 2021; Quintero et al. 2023; Fenton et al. 2023). Evidence 

853 points to a close link between the intensity of the latitudinal diversity gradient and paleoclimate 

854 (Mannion et al. 2014; Yasuhara et al. 2020; Yasuhara and Deutsch 2022), but exactly how the 

855 latitudinal diversity gradient changed over time remains an open question (BST2).

856 Biodiversity patterns are the result of extinctions, originations, and the intricate 

857 interactions between living organisms and their environment. Identifying the specific factors that 

858 drive global changes in biodiversity, and disentangling the individual and combined effects of 

859 these factors, requires careful research and analysis (BST3; and see Biodiversity Drivers). 

860 Approaches leveraging new tools—including mechanistic models (e.g., Saupe et al. 2019), 

861 machine learning (e.g., Raja et al. 2021), and network analysis (e.g., Muscente et al. 2018, 2022; 

862 Woodhouse et al. 2023)—can identify key drivers of global and regional biodiversity, and 

863 biodiversity hotspots through time (Cermeño et al. 2022), or at least provide testable hypotheses. 

864 We are only beginning to understand and quantify the role of biodiversity as a driver of 

865 ecosystem function in the paleontological record (BST4), underscoring the need for consistent 

866 units of measure across spatiotemporal scales (BST6; McGuire et al. 2023).

867  

868 Biodiversity Drivers (BD; Table 7)
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869 In paleontology, documenting patterns of biodiversity is a central theme, but 

870 understanding the factors that drive these patterns is a large task (Jablonski 2008, 2017; Ezard et 

871 al. 2016; Di Martino et al. 2018). We can, however, begin to address this challenge by 

872 decomposing the task into more manageable questions and hypotheses that extend across 

873 taxonomic levels. Comparing taxa with differing ecological characteristics (BD1, Table 7) may 

874 help disentangle prevailing drivers—including anthropogenic drivers—under shared and 

875 disparate environmental conditions or times of perturbation (BD2; Harnik 2011; Klompmaker et 

876 al. 2013; Hull et al. 2015; Trubovitz et al. 2023). In order to compare the potential drivers across 

877 taxonomic groups, and to do so on different spatial and temporal scales, it is crucial to 

878 standardize, harmonize, and clearly communicate study design and methods (Hayek et al. 2019). 

879 Doing so will help us establish broader principles that transcend specific taxonomic, spatial, and 

880 temporal contexts (BD3).

881 Abiotic and biotic conditions change through time at varying rates and magnitudes, and 

882 their effects on biodiversity and ecosystem dynamics warrant further study (BD4, BD7). It has 

883 been suggested that abiotic drivers act over broad spatiotemporal scales (e.g., Court Jester model, 

884 Barnosky 2001), whereas biotic drivers are more applicable on local and shorter scales (e.g., Red 

885 Queen model; Benton 2009; Vermeij and Roopnarine 2013; Wisz et al. 2013). The relative 

886 significance of these sets of drivers remains uncertain (BD6; e.g., Eichenseer et al. 2019; Bush 

887 and Payne 2021; Spiridonov and Lovejoy 2022), underscoring the importance of conceptual 

888 models for how biodiversity responds to them (Vrba 1985, 1992, 1993, 1995; Mancuso et al. 

889 2022). There is evidence that diversification patterns observed at higher taxonomic levels (e.g., 

890 family) are not always replicated at lower levels (e.g., species; Jablonski 2007; Hendricks et al. 

891 2014; Balisi and Van Valkenburgh 2020). Across each of these variables, the effects of scale on 
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892 which hypothesis is supported (i.e., biotic or abiotic drivers) merit further consideration—in 

893 some instances, relationships may be reversed when comparing shorter ecological and longer 

894 evolutionary timescales (BD3; e.g., De Baets et al. 2021). Further exploration with differing 

895 spatiotemporal scales, taxonomic groups, and ecologies is needed, as it remains a challenge to 

896 dissect the complex interplay between ecology, microevolution, and macroevolution on 

897 geological timescales (BD8, BD9; e.g., Liow and Taylor 2019; Liow et al. 2023). Examining the 

898 reciprocal effects of biological evolution as an actor, as well as in feedbacks and as a primary 

899 driver in other Earth systems, is a promising research direction (BD5).

900

901 Adaptations, Innovations, Origins (AIO; Table 8)

902 The evolutionary history of many species (and higher taxa) is demarcated by adaptive 

903 novelties and innovations, and repeated migration, dispersal, and colonization events as species 

904 have evolved and survived through morphological adaptation, ontogenetic shifts, and novel 

905 behaviors (AIO1, Table 8; e.g., Nylin et al. 2018; Stigall 2019). Colonizing regions in new 

906 environments and adapting to cope with the challenges induced by new environmental pressures 

907 has led to the development and emergence of advantageous novelties over time. These novelties 

908 increase the capacity of individuals to survive, thrive, and reproduce (AIO1, AIO2; e.g., Patton et 

909 al. 2021; Tihelka et al. 2022; Woehle et al. 2022). Observing modern species and their responses 

910 to stimuli provides paleontologists with a means to connect microevolutionary processes and 

911 patterns to those observed over evolutionary timescales in the fossil record (AIO6), which are 

912 obscured by taphonomic processes (AIO3). Improving data integration across scales, leveraging 

913 new methods, and better accounting for biases can help us answer longstanding questions on 

914 topics relating to phylogenomic conflict (Parins-Fukuchi et al. 2021), evolutionary patterns (e.g., 
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915 phyletic gradualism versus punctuated equilibrium, Gould and Eldredge 1972; Hunt 2007; Hunt 

916 et al. 2015; Tsuboi et al. 2024), and phylogenetic relationships (Wright et al. 2022).

917 The interdependence among ecological determinants and biological features requires 

918 thorough examination to reveal the inextricable relationship between micro- and 

919 macroevolutionary processes, environmental change, and preservation (AIO4 – 6; e.g., Lamsdell 

920 et al. 2020; Almécija et al. 2021; see Adequacy of the Fossil Record). To develop these research 

921 directions (AIO5 – 7), hypotheses on the emergence of major features (e.g., Naranjo-Ortiz and 

922 Gabaldón 2019; Murdock 2020), changes in morphology (e.g., Anderson and Ruxton 2020; 

923 Hopkins and To 2022), ontogeny (e.g., Chevalier et al. 2021; Friend et al. 2021; Lanzetti et al. 

924 2022), and behavior (e.g., Berbee et al. 2020; Yamamoto and Caterino 2023) require 

925 contextualization with spatiotemporal, taphonomic, and preservational constraints (AIO3, 4). 

926 Answering these questions can facilitate the examination of overarching patterns in biotic 

927 developmental and community responses to perturbation throughout the history of life, and can 

928 possibly be projected to the future (AIO6). Studies on the emergence of adaptations, innovative 

929 features, ontogenetic strategies, behaviors, and the development of novelties can provide 

930 paleontology with crucial insights into the processes of evolution and extinction, as well as the 

931 interactions between individuals, species, and communities (AIO5 – 7; Barido-Sottani et al. 

932 2020; Brocklehurst and Benson 2021; Stansfield et al. 2021; Dunhill et al. 2022).

933  

934 Extinction Dynamics (ED; Table 9)

935 The understanding that species are ephemeral and will eventually become extinct is now 

936 a fundamental principle of paleontology (Cuvier 1813; Darwin 1859; MacLeod 2014; Marshall 

937 2017)—and potentially scales up from species to faunas and paleocommunities (e.g., Muscente 
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938 et al. 2022). This concept is integral to the study of the history of life on Earth, as it helps to 

939 explain changes in biodiversity observed in the fossil record (Jablonski 1991; McKinney 1997). 

940 At the same time, extinction is a major theme in modern bioscience relating to impacts of 

941 anthropogenic stressors (e.g., climate change, habitat change, pollution; McKinney 1997; Dirzo 

942 et al. 2014). As usual for comparisons of the modern and fossil records, attempting to bridge the 

943 differences in study characteristics (e.g., evolutionary history of ecosystems; spatiotemporal 

944 completeness, extent, and resolution; taxonomic completeness; Foote 2000; Eichenseer et al. 

945 2019; Foster et al. 2023; Pohl et al. 2023; Finnegan et al. 2024) over which extinction can be 

946 observed necessitates reflection on which data types are suitable to facilitate cross-scale studies 

947 and comparisons (ED1, Table 9; Lotze et al. 2011; Andréoletti and Morlon 2024).

948 The Big Five mass extinctions originally were defined using the concept of statistical 

949 outliers (Raup and Sepkoski 1982) at a high taxonomic level, using a specific rate metric, and 

950 based on skeletonized marine organisms. An updated definition of mass extinction is long 

951 overdue, as is a dialogue on how pattern and process should be included in the definition (ED2; 

952 Marshall 2023). This definition would precipitate the reexamination of whether mass extinctions 

953 are associated with consistent vulnerabilities of specific morphological and ecological traits 

954 (ED3, ED4; Foster et al. 2023) and whether their phases and recovery patterns are comparable 

955 (ED6, ED7; Hull et al. 2015).

956 Another aspect of extinction dynamics is whether functional diversity is maintained 

957 across mass extinction events (ED5), and thus the ecological impact of the event (Bambach et al. 

958 2007; Foster and Twitchett 2014; Aberhan and Kiessling 2015; Dunhill et al. 2018; Muscente et 

959 al. 2018; Cribb et al. 2023). Mass extinctions are often attributed to abiotic changes (e.g., 

960 changes in temperature, oxygen content, pH), and finding thresholds relating to magnitudes and 
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961 rates of such changes remains a priority (ED8; Song et al. 2021). Species also are likely to 

962 experience secondary extinction cascades due to the loss of critical biotic interactions (e.g., 

963 predator-prey relationships) in trophic or other biological interaction networks (Roopnarine 

964 2006; Dunne and Williams 2009). If we are to truly understand the dynamics of extinction events 

965 in the fossil record and use them to predict extinction risk in our human-dominated world 

966 (Barnosky et al. 2011; Braje and Erlandson 2013; Song et al. 2021; Vahdati et al. 2022), we need 

967 to understand the interplay between primary and secondary extinction events via the inclusion of 

968 biotic interactions in studies of extinction selectivity (e.g., Sanders et al. 2018; Dunhill et al. 

969 2022; Mulvey et al. 2022).

970  

971 Climate Change Past and Present (CPP; Table 10)

972 Paleontologists often reconstruct past climates using fossils or geochemical proxies, and 

973 this remains a major theme in the biogeosciences (CPP1, Table 10). For example, examining 

974 stable oxygen isotopes in fossils can reveal climate change across temporal scales, from the 

975 lifespan of individual organisms (e.g., Nützel et al. 2010; Alberti et al. 2013) to the eon-scale 

976 (e.g., Song et al. 2019; Grossman and Joachimski 2022). However, smoothly integrating data 

977 across these temporal scales remains challenging (CPP1). Assessing biotic responses to changing 

978 climates is becoming a major theme in paleontology, with several pertinent questions (CPP2 – 9; 

979 e.g., Rita et al. 2019; Piazza et al. 2020; Nätscher et al. 2023). Nevertheless, it is critical to avoid 

980 circular reasoning where climate reconstructions based on fossil proxies subsequently are used to 

981 interpret fossils.

982 A host of variables—including direct and indirect measures of nutrient levels, 

983 temperature, pCO2, precipitation, salinity, pH, oxygen and other isotopes—can be used to 
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984 examine the influence of climate on biodiversity (Bijma et al. 2013; Saupe et al. 2019; Jane et al. 

985 2021; Jackson and O’Dea 2023; Lin et al. 2023; Yasuhara and Deutsch 2023; Malanoski et al. 

986 2024). Elucidating the relative importance of these variables on biodiversity can guide 

987 conservation efforts (CPP2, CPP8), although best practices for bridging the mismatch in 

988 temporal scales studied in paleontology and those of interest to policymakers remain elusive 

989 (CPP3, and see Scaling Ecological and Evolutionary Processes and Patterns; Smith et al. 2018; 

990 Pimiento and Antonelli 2022; Groff et al. 2023; Kiessling et al. 2023). Bridging these gaps can 

991 benefit from studies leveraging conservatism of physiology (Reddin et al. 2020), simulations 

992 (e.g., Hunt 2012; Barido-Sottani et al. 2019; Raja et al. 2021; Smith et al. 2022), and the pursuit 

993 of higher resolution paleontological datasets (Smith et al. 2023b). The application of 

994 paleontological observations to conservation practice remains primarily aspirational (Groff et al. 

995 2023); however, leveraging the need for temporal context to understand climate change is a 

996 promising avenue for integrating paleontological data (Smith et al. 2018; Dietl et al. 2019; 

997 Kiessling et al. 2019, 2023).

998 Climate sensitivity has been defined as the global mean temperature increase when 

999 atmospheric CO2 equivalent concentration is doubled (IPCC 2021) and we can use this 

1000 framework to define “ecosystem sensitivity” (CPP4). For example, how much will ecological 

1001 structure—a concept challenging to objectively measure (e.g., Parrott, 2010; LaRue et al. 

1002 2023)—change on average with a given increase in temperature? A more straightforward 

1003 assessment of shifts in spatial distribution is also possible, as there is modern (Lenoir et al. 2020) 

1004 and past (Wing et al. 2005; McElwain 2018) evidence of species ranges tracking climate. Still, 

1005 the signal is complex (Reddin et al. 2018, 2020), primarily due to sampling constraints and 

1006 limited temporal resolution, and merits further examination (CPP5). In isolation from, or in 
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1007 combination with range shifts, the degree to which species can adapt their niches over time is 

1008 crucial to predicting how they will respond to ongoing climate change (CPP6). Fossil data 

1009 support niche stability at low taxonomic levels (Hopkins et al. 2014; Saupe et al. 2014; Stigall 

1010 2014; Antell et al. 2020); however, thermal tolerances have evolved across the domains of life 

1011 (Storch et al. 2014), suggesting that the rate and relative frequency at which tolerances evolve 

1012 are key features in niche evolution.

1013 The impacts of climate change on biotic systems are numerous (Pörtner 2021), but 

1014 cascading effects are less well known (CPP7; e.g., Pecl et al. 2017; Słowiński et al. 2018). For 

1015 example, differential range shifts of species in response to climate may lead to novel 

1016 communities, with new biotic interactions and elevated potential for secondary extinctions (ED9; 

1017 Pecl et al. 2017; Chiarenza et al. 2023). Identifying cascading effects in the fossil record is likely 

1018 difficult but important to reveal the interplay of abiotic and biotic drivers under climate change 

1019 (O’Keefe et al. 2023).

1020  

1021 Conservation Paleobiology (CPB; Table 11)

1022 Conservation paleobiology, which seeks to apply the methods and theories of 

1023 paleontology to the conservation and restoration of biodiversity and ecosystem services (Dietl et 

1024 al. 2015), has emerged as a pathway for paleontologists to engage with conservation issues. A 

1025 key theme in these questions is the integration of multiple types of data and methods across 

1026 scales (CPB2, CPB4, CPB6, Table 11) to provide insights about biodiversity change (CPB3 – 5, 

1027 CPB8). Questions in this section crosscut many of the other sections—especially Climate 

1028 Change Past and Present—as conservation paleobiology is an emergent area of research in 

1029 paleontology that is informed by the entire discipline.
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1030 Many paleontologists are seeking ways to more directly connect their science to practice 

1031 (CPB1, CPB2, CPB8; Dillon et al. 2022). Though there are several success stories of 

1032 paleontological data application (e.g., Everglades restoration; Marshall et al. 2014), only 10.8% 

1033 of published conservation paleobiology studies have had a demonstrable effect on conservation 

1034 practice (comparable to other areas of conservation science; see Groff et al. 2023). A cultural 

1035 shift in the norms and practices of the paleontological community is required to produce research 

1036 results that more closely align with the needs and concerns of practitioners (Dietl et al. 2023). 

1037 How to get there is a big question (CPB1). At the same time, questions that form the theoretical 

1038 basis for conservation paleobiology (CPB3 - 7) remain research priorities, offering opportunities 

1039 for scientific progress while highlighting gaps in our understanding of biodiversity and 

1040 ecosystem function, and by extension, ecosystem services (Dillon et al. 2022). For example, it 

1041 remains a significant challenge to untangle the different drivers that push ecosystems beyond 

1042 their natural limits and to understand the resulting responses over time(CPB5). The extent to 

1043 which paleoecological records can be utilized to broaden the temporal perspective for detecting 

1044 critical transitions in ecosystems and signals of changing resilience (CPB7) is also not fully 

1045 understood. Nor is it known how, and under which circumstances, looking to the past can 

1046 contribute productively to setting baselines for ecosystem recovery (CPB4) or anticipating a 

1047 climate-changed future (CPB3). Such knowledge could support conservation management and 

1048 planning efforts designed to help reduce the loss of biodiversity and ecosystem services (CPB8) 

1049 in the face of environmental change. Theoretical development in these areas is foundational for 

1050 paleontology and is essential for the discipline to grow as an applied area of research to provide 

1051 insights about future changes in the human-dominated world (Dietl and Flessa 2011; Dietl et al. 
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1052 2015, 2019; Barnosky et al. 2017; Dillon et al. 2022; Pimiento and Antonelli 2022; Groff et al. 

1053 2023; Kiessling et al. 2023; Kowalewski et al. 2023; Zuschin 2023).

1054  

1055 Fundamental Issues (FI; Table 12)

1056 Every scientific discipline relies on a dedicated community and supportive infrastructure. 

1057 To protect paleontology’s foundational resources, infrastructure updates are needed (FI1, FI3, 

1058 FI5, Table 12). Best practices for collecting, curating, and archiving paleontological data and 

1059 heritage are developing, but a consensus remains a work in progress (FI1). Assigning specimens 

1060 an accurate taxonomy in a sound systematic framework is critical for their utility and inclusion in 

1061 a shareable resource (e.g., GBIF, iDigBio, the Paleobiology Database, FI3; Marshall et al. 2018). 

1062 The accuracy and resolution of taxonomic identifications strongly affect biodiversity 

1063 measurements and interpretation, but this fundamental work is consistently undervalued in the 

1064 current system for rewarding academics (FI3; Agnarsson and Kuntner 2007; Mabry et al. 2022; 

1065 Salvador et al. 2022, Smith et al. 2023c). As a result, taxonomic expertise is under threat (e.g., 

1066 Agnarsson and Kuntner 2007; Salvador et al. 2022). Even so, novel methods for taxonomic 

1067 analysis (e.g., machine learning; Romero et al. 2020; De Baets 2021; Punyasena et al. 2022; 

1068 Abdelhady et al. 2023; Adaïmé et al. 2024) hold the potential to make taxonomic work more 

1069 efficient, reproducible, and sustainable. Reliable taxonomic, locality, and stratigraphic 

1070 information are essential for building physical (e.g., samples) and digital (e.g., metadata, 

1071 imagery) storage infrastructure that allows comparison and integration among researchers and 

1072 scientific disciplines (Löbl et al. 2023). These improvements require a community effort that is 

1073 supported by sustainable long-term funding—particularly in the Global South (e.g., Valenzuela-

1074 Toro and Viglino 2021; Raja et al. 2022). This funding can enable expanded accessibility, use, 
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1075 and combination of data, which are critical for facilitating interdisciplinary research (Allmon et 

1076 al. 2018; Kaufman et al. 2018, Smith et al. 2023c). Through interdisciplinary research and study 

1077 programs, the field can continue to expand (FI3). For example, studies of prehistory demonstrate 

1078 long-standing human collection and use of fossils from the Middle Pleistocene onward, creating 

1079 new opportunities to understand human behavior through interactions with fossils (Cortés-

1080 Sánchez et al. 2020). Interdisciplinarity will continue to generate new creative approaches with 

1081 valuable perspectives from other disciplines (e.g., archaeology, biology) while providing new 

1082 insights on long-pursued questions in paleontology (FI2 – 4).

1083 Paleontology is also economically and societally important (FI4, FI5). Economic 

1084 contributions include resource exploration, regional tourism (Perini and Calvo 2008; Kibria et al. 

1085 2019), and diverse products based on paleontological research (e.g., books, clothing, film and 

1086 television works, theme parks, toys, video games). Aside from these outputs, paleontology 

1087 requires greater valorization within the scientific community and broader public (FI4, FI5; 

1088 Plotnick et al. 2023). Geosites are non-renewable areas important for understanding Earth’s 

1089 history through the observation of biological and geological phenomena. Protecting and 

1090 conserving important outcrops (e.g., Atkinson et al. 2005; Maran 2014; Mexicana 2020; Neto De 

1091 Carvalho et al. 2021; Carvalho and Leonardi 2022), and access to them, necessitates transparent 

1092 discussion among all who interact with and care about the sites (e.g., paleontologists, 

1093 landowners, traditional custodians of the land, universities, industrial companies, museums, 

1094 government). Additionally, collection spaces are the physical repositories of our geoheritage 

1095 (e.g. museums, geological surveys) and require sustained support from governments, academics, 

1096 and the public. The primary evidence that paleontologists rely on (physical specimens) are under 

1097 threat due to restructuring in funding models and museum closures, which removes from the 
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1098 public a pathway for engagement with geoheritage. Public engagement provides a valuable 

1099 means to increase the profile of paleontology. This work, and the people involved in it, require 

1100 significant investment to draw together science, economy, and culture to care for Earth and life’s 

1101 heritage (FI1, FI4, FI5).

1102 As scientists, we have a responsibility to communicate with the public about our work yet 

1103 many researchers receive no formal training on how to perform this duty (e.g., Salvador et al. 

1104 2021), and these activities are secondary in hiring and promotion decisions (FI2, FI4; e.g., 

1105 Davies et al. 2021; Raja and Dunne 2022). Without an informed public, policymakers cannot 

1106 craft legislation that benefits the greatest number of people, and individuals cannot make 

1107 accurate data-driven decisions. The roles of paleontologists continue to diversify, with a large 

1108 proportion of graduates working outside of academia in settings with variable skill requirements  

1109 (FI2; e.g., industry, conservation, education, government; Keane et al. 2021). Paleontologists 

1110 need skills to make them academically, economically, and socially valuable so they can share 

1111 information about the long-term changes and variability that life on Earth has experienced with 

1112 increased proficiency.

1113  

1114 Looking Inward and Outward (LIO; Table 13)

1115 Whereas paleontologists are keenly aware of the taphonomic biases constraining our 

1116 view of past biodiversity, we have not systematically studied the biases linked to the identities 

1117 and practices shaping how we collect, analyze, and interpret the fossil record. Presently, socio-

1118 economic factors disproportionately influence the sampling coverage of both modern ecosystems 

1119 and past biodiversity (Cisneros et al. 2022; Monarrez et al. 2022; Raja et al. 2022). Many 

1120 perspectives and data are missing, which contributes to an incomplete understanding of past and 
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1121 present global biodiversity and restricts the development of ecological and evolutionary theory 

1122 (LIO1, Table 13; Mohammed et al. 2022; Raja et al. 2022). Identifying and addressing these 

1123 biases and challenges in paleontology (e.g., dominance of the English language; Cisneros et al. 

1124 2022; Raja et al. 2022), and incorporating as many diverse perspectives as possible, will lead to a 

1125 better understanding of all aspects of life on Earth (LIO2, LIO3).

1126 Though many people globally have undertaken the study of past life, including within 

1127 Indigenous traditions and local communities (Mayor 2007; Benoit et al. 2024), the earliest data 

1128 points of Western academic paleontology are tied to the expansion of colonial empires 

1129 (Monarrez et al. 2022; Scarlett 2022). Current research infrastructure is often built on these 

1130 colonial legacies, including specimens held in museum collections (LIO4; Bradley et al. 2014; 

1131 Cisneros et al. 2022; Mohammed et al. 2022; Monarrez et al. 2022; Raja et al. 2022). 

1132 Digitization efforts are making museum collections and exhibits more accessible internationally 

1133 to those with internet access, but digital representations do not necessarily provide the same 

1134 research and engagement opportunities as physical specimens and have their own complications 

1135 (e.g., compliance with sharing policies, digital quality and resolution, large file sizes, internet 

1136 access and bandwidth; Falkingham 2012; Lewis 2019). Natural history specimens and geosites 

1137 are often considered to be natural heritage items (including status as UNESCO sites, 

1138 https://whc.unesco.org/en/list/), and calls for repatriation are growing in number (Bradley et al. 

1139 2014; Vogel 2019), making evaluating this issue in paleontology a priority (LIO4; see 

1140 Foundational Issues).

1141 Researchers, institutions, and funding bodies must make proactive decisions to avoid 

1142 contributing further to colonial legacies by evaluating the power dynamics of international 

1143 collaborations while contending with the curation of specimens collected in the past (LIO5; e.g., 
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1144 Dunne et al. 2022). These decisions can run counter to incentives for publication on “novelty” 

1145 and unique specimens, which are often gleaned from fieldwork in key geographic regions (e.g., 

1146 Myanmar; LIO6; Dunne et al. 2022; Raja et al. 2022).

1147 More broadly, fieldwork is not equally accessible to everyone despite its high value as a 

1148 component of science education (e.g., Shinbrot et al. 2022). As in all the sciences with fieldwork 

1149 components, paleontologists must grapple with safety and equity considerations including 

1150 mechanisms for reporting sexual harassment and assault (Clancy et al. 2014), explicit discussions 

1151 about the safety of people of marginalized identities in field conditions (Demery and Pipkin 

1152 2021; Rudzki et al. 2022), and accessibility and inclusive design of field experiences for people 

1153 with disabilities (LIO6; Stokes et al. 2019).

1154 The exclusion and attrition of groups of people with particular identities and affinities 

1155 (i.e., minoritized or marginalized groups) from academia have previously been described as a 

1156 passive, leaky pipeline; however, this metaphor downplays the challenges posed by racism, 

1157 colonial legacies, and systemic bias at institutional levels, which are now more accurately 

1158 described as a “hostile obstacle course” (e.g., Bernard and Cooperdock 2018; Valenzuela-Toro 

1159 and Viglino 2021; Berhe et al. 2022; Carter et al. 2022). Recognizing that these challenges exist, 

1160 paleontologists must identify and embrace practices that create a more inclusive and equitable 

1161 culture (LIO7; Valenzuela-Toro and Viglino 2021; Carter et al. 2022; Cisneros et al. 2022; Raja 

1162 et al. 2022). Current diversity, equity, and inclusion tasks fall disproportionately on minoritized 

1163 individuals, yet often are not considered in tenure and promotion assessments (LIO8; Jimenez et 

1164 al. 2019). Although individual actions are important, support for diversity, equity, and inclusion 

1165 must come from the highest levels of leadership (e.g., those making funding decisions) to signal 

1166 their value (Dutt 2021; Chen et al. 2022). In implementing these changes, we can iteratively add 
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1167 to our dataset of changing outcomes in paleontology to evaluate whether such actions are 

1168 effective (LIO2) and how this affects our understanding of both past and future worlds (LIO1).

1169  

1170 Concluding remarks

1171 The present state of paleontological research is complex and constantly changing. Considering 

1172 the limited number of paleontologists employed professionally in comparison to other scientific 

1173 fields (e.g., Keane et al. 2021; Plotnick et al. 2024), it is prudent to develop a shared research 

1174 agenda that the paleontological community can jointly address (Figure 3). The questions 

1175 presented here are unavoidably influenced by the perspectives of those participating and by the 

1176 initial set of questions submitted. However, we have attempted to minimize this influence 

1177 through our strategy for an inclusive approach to question submission, project participation, and 

1178 authorship. Doing so gives us confidence that these BQs faithfully represent a forward-looking 

1179 agenda for the discipline of paleontology.

1180 Whether this list of questions is taken as a whole, separated by theme, or piecemeal as 

1181 individual questions, we encourage all in the paleontological community to use these BQs as a 

1182 tool to communicate the importance of paleontology and for securing research funding. Indeed, 

1183 as the questions presented here have emerged from a community-wide effort, they likely are 

1184 more representative of the state of the field than if the exercise was conducted with a top-down 

1185 approach by a select few individuals, and this element may add credibility and power to 

1186 arguments for funding in paleontology, broadly. As in other endeavors to define priority 

1187 questions (e.g., Sutherland et al. 2009; Seddon et al. 2014), we expect a variety of uses (e.g., 

1188 development of research projects, spurring discussion on the importance of different BQs) and 

1189 audiences (e.g., other scientists, funding bodies, students, the general public). We anticipate 
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1190 these BQs will be used by researchers as framing and inspiration for new research directions, and 

1191 as a tool they can use to justify paleontological research to funding organizations (Figure 3). The 

1192 BQs reiterate the substantive contributions of museums and physical collection spaces, making 

1193 clear a need for sustained funding of the repositories of our geoheritage. The BQs highlight the 

1194 breadth and vitality of paleontology, and the important and substantive role the discipline will 

1195 continue to play in pushing the frontiers of understanding throughout the life sciences.

1196 Many of the questions included here are directed at pursuing long-standing hypotheses on 

1197 how life has evolved and responded to environmental change. A large portion also pertains to the 

1198 application of paleontological data to the biodiversity and environmental crises that permeate the 

1199 modern world. Questions in each of these areas share common considerations, including the 

1200 effects of scale on observations and the ever-present challenge of assessing the adequacy of the 

1201 fossil record to address these questions. Reflecting larger ongoing discussions in science and 

1202 society, there is also an emphasis on conducting paleontological research more inclusively and 

1203 equitably as a community. Through efforts like this Big Questions project that bring together 

1204 groups of people with many backgrounds, expertises, and motivations, we aspire to grow and 

1205 strengthen the global paleontological community. Our collective understanding of the history, 

1206 and future, of life on Earth will only be improved by creating a cohesive discipline where all 

1207 interested individuals can contribute.

1208  
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2059 Figures:

2060 Figure 1. The question pathway in the Big Questions project. Questions were submitted by the 

2061 global community in one of three solicitations. Submitted questions were assigned to working 

2062 groups (n=12) composed of self-identified topic-experts who chose to participate in the project. 

2063 Working groups were guided by one to three leaders (larger icons) and refined their assigned 

2064 questions to a preliminary list. These preliminary questions were assessed by the entire Big 

2065 Questions team to improve question quality and reduce redundancies in questions from different 

2066 groups. Using the whole-team feedback, working groups (reduced to eleven due to overlaps, 

2067 Table 2) produced a refined set of final big questions. Created with BioRender.com

2068  

2069 Figure 2. Assignments of originally submitted questions to different working groups. Each 

2070 question was assigned to at least one group and many were also assigned to a second group with 

2071 topic overlap. Width of the outer circle represents the number of questions assigned to each 

2072 working group (counts also provided in parentheses). Bands connecting different working groups 

2073 represent the questions assigned to each of the groups, with thicker bands indicating a larger 

2074 number of questions shared between groups. Created in R Statistical Software (v4.3.1; R Core 

2075 Team 2023) using the circlize package (Gu et al. 2014) and the Paired palette from 

2076 RColorBrewer (Neuwirth 2022).

2077  

2078 Figure 3. The Big Questions project can be used as a tool to guide research in paleontology and 

2079 to advocate for the importance of funding paleontological research.

2080  
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2082 Tables:

2083 Table 1. Countries and administrative regions represented in the Big Questions project by 

2084 affiliations of the authorship team, with respect to when individuals joined the project. Note: as 
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Table 1. Countries and administrative regions represented in the Big Questions project by 

affiliations of the authorship team, with respect to when individuals joined the project. Note: as 

countries and administrative regions represented are derived from the institutional affiliations of 

the authors, this is likely an underestimate of the number of countries and administrative regions 

represented by individuals in this project.

First 
Solicitation

Second 
Solicitation

Third 
Solicitation

Authorship 
Team

Country/
Administrative 
Region (AR)

Number of 
Affiliations 

(% of 
solicitation 

total)

Number of 
Affiliations 

(% of 
solicitation 

total)

Number of 
Affiliations 

(% of 
solicitation 

total)

Number of 
Affiliations 

(% of 
authorship 

total)
Argentina 3 (5.8%)  10 (13.9%) 10 (6.1%)
Australia 1 (1.9%) 2 (5.1%) 2 (2.8%) 5 (3.1%)
Austria  2 (5.1%) 2 (1.2%)
Brazil  2 (2.8%) 2 (1.2%)
Canada  1 (1.4%) 1 (0.6%)
China  4 (5.6%) 4 (2.5%)
Colombia  1 (2.6%) 1 (0.6%)
Czech Republic 2 (3.8%) 1 (2.6%) 3 (2.0%)
Egypt  1 (2.6%) 1 (0.6%)
France  2 (2.8%) 2 (1.2%)
Germany 14 (26.9%) 4 (10.3%) 1 (1.4%) 18 (11.0%)
Ghana 1 (1.9%) 1 (0.6%)
Hong Kong 
SAR, China 1 (1.9%) 1 (0.6%)

India  4 (5.6%) 4 (2.5%)
Italy 1 (1.9%) 2 (5.1%) 1 (1.4%) 4 (2.5%)
Jamaica  1 (2.6%) 1 (0.6%)
Madagascar  2 (2.8%) 2 (1.2%)
Mongolia  1 (1.4%) 1 (0.6%)
New Zealand  1 (1.4%) 1 (0.6%)
Norway  1 (2.6%) 1 (0.6%)
Panama 2 (3.8%) 1 (2.6%) 2 (2.8%) 5 (3.1%)
Poland 1 (1.9%) 1 (0.6%)
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Portugal 1 (1.9%) 2 (2.8%) 3 (2.0%)
Singapore  1 (1.4%) 1 (0.6%)
South Africa  1 (1.4%) 1 (0.6%)
Spain 5 (9.6%) 2 (5.1%) 3 (4.2%) 10 (6.1%)
Switzerland  4 (5.6%) 4 (2.5%)
Taiwan  1 (2.6%) 2 (2.8%) 6 (3.7%)
UK 2 (3.8%) 3 (7.7%) 1 (1.4%) 9 (5.5%)
USA 18 (34.6%) 16 (41.0%) 19 (26.4%) 47 (28.8%)
Venezuela  1 (2.6%) 1 (0.6%)
Affiliations 
Added

52 39 72 163

Countries/AR 
Added

13 7 11 31
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Table 2. Working group themes and numbers of questions related to these groups at three stages 

of the project. The number of individuals assigned to each group is also provided, with the 

number of group leaders in parentheses.

Working group 
themes

Number of assigned 
participants (group 
leaders)

Initial questions 
assigned to group

Preliminary 
questions

Final 
questions

Adaptations, 
Innovations, Origins 
(AIO) 

17 (2) 50 4 7

Biodiversity Drivers 
(BD)

17 (2) 74 9 9

Biodiversity 
Dynamics in Space 
and Time (BST)

17 (2) 47 8 7

Climate Change Past 
and Present (CPP)

16 (2) 52 10 9

Conservation 
Paleobiology (CPB)

17 (2) 76 6 8

Ecosystems, 
Environments, and 
their Records

16 (2) 55 16 0**

Extinction Dynamics 
(ED)

17 (2) 60 11 9

Phylogenetics, 
Taxonomy, and 
Systematics (PST)

17 (3) 66 11 10

Scaling Ecological 
and Evolutionary 
Processes and 
Patterns (SEP)

16 (1) 75 11 9

The Adequacy of the 
Fossil Record (AFR)

16 (2) 51 11 8

Page 106 of 113

Cambridge University Press

Paleobiology



For Peer Review

Fundamental Issues 
(FI)

22 (2) 75 9 5

Looking Inward and 
Outward (LIO)

24 (1) 14 11 8

Total Questions: 695* 117 89

* Total is greater than the number of submitted questions (n = 528) because, when a question 

was relevant to more than one group, it was assigned to each of those groups for consideration.

** The theme “Ecosystems, Environments, and Their Records” was included originally but, after 

the whole-team feedback phase (Figure 1), considerable overlaps with questions from other 

groups were apparent and all questions from this theme were ultimately dispersed elsewhere or 

subsumed by questions in other groups.
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Table 3. Big questions for the working group on The Adequacy of the Fossil Record.

Unique ID Big Question

AFR1 How can we best quantify preservation and collecting biases?

AFR2 How do we develop methods to identify, minimize, and correct data entry 
biases?

AFR3 How do we account for data loss in historical collections and publications?

AFR4 How do we standardize taxonomic, stratigraphic, and ecological reporting 
during data acquisition?

AFR5 How can we improve the collection of biomolecules from fossils, and what are 
the limits for biomolecule analysis?

AFR6 How can we correlate marine and terrestrial strata more precisely?

AFR7 In what ways can we use isotopic systems and geochemical methods to help 
identify preservation biases?

AFR8 Which opportunities and threats for fossil discovery will arise as a result of the 
changing climate?

Page 108 of 113

Cambridge University Press

Paleobiology



For Peer Review

Table 4. Big questions for the working group on Scaling Ecological and Evolutionary Processes 

and Patterns.

Unique ID Big Question

SEP1 Which evolutionary and ecological processes (local to global) can be best 
evaluated using the fossil record?

SEP2 In the fossil record, how do we interpret and measure ecological and 
evolutionary trends at different taxonomic, spatial, and temporal scales to infer 
directionality or causality?

SEP3 How do we address the spatial, temporal, and taxonomic incompleteness of the 
fossil record to be able to interpret ecological and evolutionary processes and 
patterns at different scales?

SEP4 How can we identify and counteract spatial and temporal transmutations (a 
change in the relationship between variables caused by crossing data scales, 
leading to interpretive error) within ecological and evolutionary models?

SEP5 Given incompleteness of the fossil record and spatiotemporal averaging, how 
do we estimate rates of change in taxonomic composition, community structure, 
ecosystem function, niches, traits, life modes, turnover etc., using the fossil 
record?

SEP6 What drives metacommunity composition and community assembly over time 
and space? 

SEP7 How do external environmental drivers (e.g., plate tectonics, global 
temperature, sea level) influence the structure of biological systems at different 
spatiotemporal scales?

SEP8 What are the signatures of emergent processes at macroevolutionary timescales 
(e.g., species sorting, species selection, clade competition)?

SEP9 How do biological systems impact the abiotic systems and the feedback 
between them at different scales?
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Table 5. Big questions for the working group on Phylogenetics, Taxonomy, and Systematics.

Unique ID Big Question

PTS1 What causes the mechanism of speciation or character evolution to change 
over time?

PTS2 Which abiotic and biotic factors determine species longevity (stratigraphic 
duration)?

PTS3 Which aspects of the macroevolutionary process are identifiable in the 
molecular or fossil records using phylogenetic methods, and under which 
circumstances?

PTS4 How can traditional taxonomy be used to inform the process of selecting the 
best operational taxonomic unit for a particular phylogenetic analysis (e.g. 
diversification, disparification, phylogeny)?

PTS5 How can taxonomic practice help to harmonize boundaries between taxa in 
fossil and extant groups?

PTS6 How can we collect and integrate developmental data observable in the fossil 
record (e.g., timing of organogenesis, gene expression) into phylogenetic 
approaches?

PTS7 How much phylogenetic information can be gained from combining different 
types of data (e.g. morphology, stratigraphy, biogeography, environmental)?

PTS8 How can we improve the performance of phylogenetic inference through the 
development of better methods?

PTS9 How do we improve the representation of uncertainty and bias from the fossil 
and geological records in phylogenetic inference?

PTS10 What can we learn about environmental and geological processes using 
phylogenetic methods?
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Table 6. Big questions for the working group on Biodiversity Dynamics in Space and Time.

Unique ID Big Question

BST1 What is the global diversity trend through time and how is diversity 
constrained, if at all?

BST2 How have large-scale spatial diversity patterns (e.g., latitudinal diversity 
gradient, distribution of diversity hotspots) changed across deep time?

BST3 What are important drivers of global trends in taxonomic diversity or ecological 
disparity, and has their relative importance changed through time?

BST4 What is the relationship between deep-time biodiversity (e.g., taxonomic 
richness, ecomorphological disparity) and ecosystem function (the combination 
of all biological interactions and physical processes occurring in an ecosystem)?

BST5 What are the drivers of origination in space and time?

BST6 What is a common basis (e.g., taxonomic units, morphological traits) that can 
be used consistently to bridge modern and fossil biodiversity research?

BST7 In what ways is the “Anthropocene” creating a unique signature in biodiversity 
over geologic time (both direct and indirect effects; e.g., changes in climate and 
in connectivity)?
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Table 7. Big questions for the working group on Biodiversity Drivers.

Unique ID Big Question

BD1 How does the ecological niche of species influence their response to 
perturbation?

BD2 How does the prevailing climate state experienced by species and 
communities influence their response to perturbation?

BD3 How do methodological choices influence the outcome of studies 
investigating the relative importance of abiotic and biotic drivers in driving 
biodiversity dynamics?

BD4 How do the rate and magnitude of environmental change impact 
diversification?

BD5 How did biologic evolution affect the evolution of other Earth systems (e.g., 
litho-, atmo-, and hydrosphere)?

BD6 How has the relative importance of biotic and abiotic drivers of biodiversity 
and extinction changed through time?

BD7 What is the relative role of biotic and abiotic drivers in increasing ecosystem 
complexity?

BD8 To what extent do population-based characteristics determine resilience to 
extinction through geological time?

BD9 How do changes in community structure observed at the population level 
relate to evolutionary changes in ecosystems through time?
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Table 8. Big questions for the working groups on Adaptations, Innovations, Origins.

Unique ID Big Question

AIO1 What were the geological and biological drivers of the origin of life, and major 
groups of organisms such as eukaryotes, plants, animals, and fungi?

AIO2 How were major life transitions (e.g., origins of biomineralization, early 
Paleozoic diversifications, terrestrialization, evolution of planktonic lifestyle) in 
Earth’s history associated with major changes in the geological and/or 
biological environment?

AIO3 How is our understanding of the origination of novelties and innovations 
affected by fossil preservation, the global quality of the fossil record, and 
stratigraphic completeness?

AIO4 What are best practices for integrating different analytical tools and techniques 
to improve our interpretation of the ecological context and timing of the origin 
of adaptations and features?

AIO5 How have changes in ontogeny (i.e., life history traits such as larval/juvenile 
ecology, growth, and developmental patterns including heterochronies) 
influenced macroevolution or themselves been influenced by environmental 
change?

AIO6 Which common patterns of morphological or behavioral responses to 
environmental change on evolutionary timescales can be identified and how do 
these compare with modern systems on ecological timescales?

AIO7 Which observable differences in the origin and fixation of features at different 
scales of biological hierarchy can be identified and what generated these 
patterns?
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Table 9. Big questions for the working groups on Extinction Dynamics.

Unique ID Big Question

ED1 Which data types can be used to most effectively compare past extinctions to 
the current biodiversity crisis?

ED2 With our changing understanding of extinctions, how should the definition of 
“mass extinction” be updated to reflect a unified concept?

ED3 Which, if any, biotic traits associated with survival through a mass extinction 
(e.g. body size, trophic mode, species associations) are universal across taxa 
and/or time?

ED4 Which, if any, ecological impacts of extinction are generalizable across time?

ED5 To what extent are ecological functions maintained following the extinction 
of species?

ED6 To what extent are the phases of events (e.g., collapse, recovery) during 
extinctions consistent across different biotic crises?

ED7 Which, if any, patterns in the process and timing of recovery following 
extinction events are universal across clades?

ED8 At what threshold can climate or other abiotic change cause an extinction?

ED9 What is the role of cascading biological effects in extinction dynamics?
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Table 10. Big questions for the working groups on Climate Change Past and Present.

Unique ID Big Question

CPP1 How can fossils best be used to reconstruct climate change over different time 
scales?

CPP2 Which climate factors are the proximate drivers of extinction?

CPP3 How can we best use the fossil record to predict climate change impacts on 
the modern biota?

CPP4 What is the "ecosystem sensitivity" of ecosystem structure in response to 
climate change?

CPP5 How have the spatial distributions of organisms shifted in response to climate 
change?

CPP6 How have organisms’ tolerances changed in response to climate change?

CPP7 Which cascading effects of climate change can be identified from the fossil 
record?

CPP8 What adaptation and management options for conservation biology can be 
derived from past biosphere responses to climate change?

CPP9 How has climate change affected the evolution of life?
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Table 11. Big questions for the working groups on Conservation Paleobiology.

Unique ID Big Question

CPB1 What translational science strategies could be adopted to ensure that 
conservation paleobiology research remains relevant and aligned with the 
priorities of environmental resource managers and conservation practitioners?

CPB2 How do we integrate multiple types of paleontological data (e.g., molecular, 
environmental, ecological) with planning and decision support tools for 
guiding ecosystem management?

CPB3 How can our understanding of past episodes of environmental change be used 
to develop scenarios of biological responses to modern and future 
environmental stressors?

CPB4 How can we use paleontological data to define meaningful ecological 
baselines that are relevant to conservation across spatial and temporal scales?

CPB5 How can the fossil record inform our ability to diagnose and mitigate the 
effects of multiple interacting human and non-human drivers of 
environmental change on biodiversity and ecosystem functioning?

CPB6 How can we compare rates of biodiversity change (e.g., extinction, 
adaptation, geographic range shifts) across ecological, historical, and 
paleontological timescales?

CPB7 How can recent sedimentary records expand the temporal scope over which 
ecological resilience can be evaluated?

CPB8 In what ways can paleoenvironmental reconstructions improve the accuracy 
and scope of ecosystem services risk assessments?
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Table 12. Big questions for the working groups on Fundamental Issues.

Unique ID Big Question

FI1 How can we efficiently collect, store, and combine different paleontological 
data types in an openly accessible and inclusive way?

FI2 What are best practices for training paleontologists to have a broad set of 
skills (e.g., data analyses, research skills, soft skills) that is transferable to an 
increasingly wider range of job requirements inside and outside of academia?

FI3 How can we best motivate taxonomic and systematic work and facilitate 
cross-talk and collaboration with other paleontological disciplines?

FI4 How can paleontologists communicate findings and foster critical thinking 
skills so that the public can understand the utility of paleontological 
information and differentiate valid scientific ideas from other ideas?

FI5 What are the best practices for the protection and valorization of geosites and 
unique fossil heritage?
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Table 13. Big questions for the working groups on Looking Inward and Outward.

Unique ID Big Question

LIO1 How is our understanding of past ecological and evolutionary processes shaped 
by biases in publication by location, authorship, language use, and funding 
availability?

LIO2 Which processes drive turnover in diversity trends (e.g., gender identities, 
different geographic regions) of academic paleontologists over time, and how 
could increased diversity lead to increasingly diverse products and outcomes?

LIO3 Which socioeconomic and identity factors—and their intersections—underlie 
variability in publication rate, professional advancement, and grant awards 
among the global paleontology community, both historically and in the present 
day? 

LIO4 To what extent are paleontological specimen collecting and repository practices 
built on a legacy of colonial economic structures and how can we avoid 
recapitulating these interactions today across individual and institutional 
collaborations?

LIO5 How should qualities of fossil origin (e.g., country, sovereignty, collection 
process, local collaborative involvement, political conflict) be considered when 
designing research and navigating potential trade-offs in ethics and scientific 
value?

LIO6 Which settings (e.g., economic, cultural, physical) govern the biogeography of 
where paleontological field work occurs and who (e.g., gender/ethnic identity) 
carries out—and benefits from—that work? 

LIO7 Which institutional and mentorship attributes, such as accountability 
mechanisms, facilitate equitable collaboration among paleontologists, avoid 
bias, and promote the retention of students from backgrounds and identities 
currently underrepresented in paleontology? 

LIO8 How do we integrate and sustain a commitment to diversity, equity, and 
inclusion initiatives into the foundations of hiring, promotion, and funding 
schemes in paleontology?
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